Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Tree Physiol ; 44(1)2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38079520

RESUMEN

Increasing evidence indicates that tree growth processes, including reproduction, can be either sink- or source-limited, or simultaneously co-limited by sink and source, depending on the interplay between internal and environmental factors. We tested the hypothesis that the relative strengths of photosynthate supply and demand by stem growth and reproduction create variable competition for substrate that is imprinted in the tree-ring isotopes (C and O) of stone pine (Pinus pinea L.), a masting gymnosperm with large costs of reproduction, under warming-induced drought. Across five representative stands of the Spanish Northern Plateau, we also identified reproductive phases where weather drivers of cone yield (CY) have varied over a 60-year period (1960-2016). We found that these drivers gradually shifted from winter-spring conditions 3 years before seed rain (cone setting) to a combination of 3- and 1-year lagged effects (kernel filling). Additionally, we observed positive regional associations between carbon isotope discrimination (Δ13C) of the year of kernel filling and CY arising at the turn of this century, which progressively offset similarly positive relationships between Δ13C of the year of cone setting and CY found during the first half of the study period. Altogether, these results pinpoint the increasing dependence of reproduction on fresh assimilates and suggest sink and source co-limitation superseding the sink-limited functioning of reproduction dominant before 2000. Under climate warming, it could be expected that drier conditions reinforce the role of source limitation on reproduction and, hence, on regeneration, forest structure and economic profit of the nutlike seeds of the species.


Asunto(s)
Pinus , Árboles , Factores de Tiempo , Bosques , Isótopos de Carbono/análisis , Reproducción
2.
Ann Bot ; 130(4): 509-523, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-35797146

RESUMEN

BACKGROUND AND AIMS: Understanding the genetic basis of adaptation and plasticity in trees constitutes a knowledge gap. We linked dendrochronology and genomics [single nucleotide polymorphisms (SNPs)] for a widespread conifer (Pinus halepensis Mill.) to characterize intraspecific growth differences elicited by climate. METHODS: The analysis comprised 20-year tree-ring series of 130 trees structured in 23 populations evaluated in a common garden. We tested for genotype by environment interactions (G × E) of indexed ring width (RWI) and early- to latewood ratios (ELI) using factorial regression, which describes G × E as differential gene sensitivity to climate. KEY RESULTS: The species' annual growth was positively influenced by winter temperature and spring moisture and negatively influenced by previous autumn precipitation and warm springs. Four and five climate factors explained 10 % (RWI) and 16 % (ELI) of population-specific interannual variability, respectively, with populations from drought-prone areas and with uneven precipitation experiencing larger growth reductions during dry vegetative periods. Furthermore, four and two SNPs explained 14 % (RWI) and 10 % (ELI) of interannual variability among trees, respectively. Two SNPs played a putative role in adaptation to climate: one identified from transcriptome sequencing of P. halepensis and another involved in response regulation to environmental stressors. CONCLUSIONS: We highlight how tree-ring phenotypes, obtained from a common garden experiment, combined with a candidate-gene approach allow the quantification of genetic and environmental effects determining adaptation for a conifer with a large and complex genome.


Asunto(s)
Pinus , Árboles , Clima , Sequías , Interacción Gen-Ambiente , Fenotipo , Pinus/fisiología
3.
J Exp Bot ; 73(4): 1222-1235, 2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-34865003

RESUMEN

Although the straightening capacity of the stem is key for light capture and mechanical stability in forest trees, little is known about its adaptive implications. Assuming that stem straightening is costly, trade-offs are expected with competing processes such as growth, maintenance, and defence. We established a manipulative experiment in a common garden of Pinus pinaster including provenances typically showing either straight-stemmed or crooked-stemmed phenotypes. We imposed a bending up to 35º on plants aged 9 years of both provenance groups and followed the straightening kinetics and shoot elongation after releasing. Eight months later, we destructively assessed biomass partitioning, reaction wood, wood microdensity, xylem reserve carbohydrates, and phloem secondary metabolites. The experimental bending and release caused significant, complex changes with a marked difference between straight- and crooked-type plants. The straight-type recovered verticality faster and to a higher degree and developed more compression wood, while displaying a transitory delay in shoot elongation, reducing resource allocation to defence and maintaining the levels of non-structural carbohydrates compared with the crooked type. This combination of responses indicates the existence of intraspecific divergence in the reaction to mechanical stresses that may be related to different adaptive phenotypic plasticity.


Asunto(s)
Pinus , Pinus/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Madera
4.
Am J Bot ; 108(1): 102-112, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33512710

RESUMEN

PREMISE: Persistence of tree populations in the face of global change relies on their capacity to respond to biotic and abiotic stressors through plastic or adaptive changes. Genetic adaptation will depend on the additive genetic variation within populations and the heritability of traits related to stress tolerance. Because traits can be genetically linked, selective pressure acting on one trait may lead to correlated responses in other traits. METHODS: To test direct and correlated responses to selection for growth and drought tolerance in Pinus halepensis, we selected trees in a parental population for higher growth and greater water-use efficiency (WUE) and compared their offspring with the offspring of random trees from the parental population in two contrasting common gardens. We estimated direct responses to selection for growth and WUE and correlated responses for growth and tolerance to abiotic and biotic stressors. RESULTS: We found a strong response to selection and high realized heritability for WUE, but no response to selection for growth. Correlated responses to selection in other life-history traits were not significant, except for concentration of some chemical defenses, which was greater in the offspring of mother trees selected for growth than in the offspring of unselected control trees. CONCLUSIONS: The empirical evidence of direct responses to selection for high WUE suggests that P. halepensis has the potential to evolve in response to increasing drought stress. Contrary to expectations, the results are not conclusive of a potential negative impact of WUE and growth selection on other key life-history traits.


Asunto(s)
Pinus , Agua , Sequías , Fenotipo , Pinus/genética , Árboles/genética
5.
New Phytol ; 229(1): 245-258, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32893885

RESUMEN

Progress in high-throughput phenotyping and genomics provides the potential to understand the genetic basis of plant functional differentiation. We developed a semi-automatic methodology based on unmanned aerial vehicle (UAV) imagery for deriving tree-level phenotypes followed by genome-wide association study (GWAS). An RGB-based point cloud was used for tree crown identification in a common garden of Pinus halepensis in Spain. Crowns were combined with multispectral and thermal orthomosaics to retrieve growth traits, vegetation indices and canopy temperature. Thereafter, GWAS was performed to analyse the association between phenotypes and genomic variation at 235 single nucleotide polymorphisms (SNPs). Growth traits were associated with 12 SNPs involved in cellulose and carbohydrate metabolism. Indices related to transpiration and leaf water content were associated with six SNPs involved in stomata dynamics. Indices related to leaf pigments and leaf area were associated with 11 SNPs involved in signalling and peroxisome metabolism. About 16-20% of trait variance was explained by combinations of several SNPs, indicating polygenic control of morpho-physiological traits. Despite a limited availability of markers and individuals, this study is provides a successful proof-of-concept for the combination of high-throughput UAV-based phenotyping with cost-effective genotyping to disentangle the genetic architecture of phenotypic variation in a widespread conifer.


Asunto(s)
Estudio de Asociación del Genoma Completo , Pinus , Genotipo , Fenotipo , Pinus/genética , España
6.
Plant Cell Environ ; 43(8): 1944-1957, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32394490

RESUMEN

Resprouting is an ancestral trait in angiosperms that confers resilience after perturbations. As climate change increases stress, resprouting vigor is declining in many forest regions, but the underlying mechanism is poorly understood. Resprouting in woody plants is thought to be primarily limited by the availability of non-structural carbohydrate reserves (NSC), but hydraulic limitations could also be important. We conducted a multifactorial experiment with two levels of light (ambient, 2-3% of ambient) and three levels of water stress (0, 50 and 80 percent losses of hydraulic conductivity, PLC) on two Mediterranean oaks (Quercus ilex and Q. faginea) under a rain-out shelter (n = 360). The proportion of resprouting individuals after canopy clipping declined markedly as PLC increased for both species. NSC concentrations affected the response of Q. ilex, the species with higher leaf construction costs, and its effect depended on the PLC. The growth of resprouting individuals was largely dependent on photosynthetic rates for both species, while stored NSC availability and hydraulic limitations played minor and non-significant roles, respectively. Contrary to conventional wisdom, our results indicate that resprouting in oaks may be primarily driven by complex interactions between hydraulics and carbon sources, whereas stored NSC play a significant but secondary role.


Asunto(s)
Metabolismo de los Hidratos de Carbono/fisiología , Raíces de Plantas/metabolismo , Quercus/fisiología , Deshidratación , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Quercus/crecimiento & desarrollo , España
7.
New Phytol ; 228(2): 525-540, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32402106

RESUMEN

Many ecologically important forest trees from dry areas have been insufficiently investigated for their ability to adapt to the challenges posed by climate change, which hampers the implementation of mitigation policies. We analyzed 14 common-garden experiments across the Mediterranean which studied the widespread thermophilic conifer Pinus halepensis and involved 157 populations categorized into five ecotypes. Ecotype-specific tree height responses to climate were applied to projected climate change (2071-2100 ad), to project potential growth patterns both locally and across the species' range. We found contrasting ecotypic sensitivities to annual precipitation but comparatively uniform responses to mean temperature, while evidence of local adaptation for tree height was limited to mesic ecotypes. We projected intriguing patterns of response range-wide, implying either height inhibition or stimulation of up to 75%, and deduced that the ecotype currently experiencing more favorable (wetter) conditions will show the largest inhibition. Extensive height reductions can be expected for coastal areas of France, Greece, Spain and northern Africa. Our findings underline the fact that intraspecific variations in sensitivity to precipitation must be considered when projecting tree height responses of dry forests to future climate. The ecotype-specific projected performances call for management activities to ensure forest resilience in the Mediterranean through, for example, tailored deployment strategies.


Asunto(s)
Pinus , Tracheophyta , Cambio Climático , Bosques , Francia , España , Árboles
8.
Sci Total Environ ; 720: 137590, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32143049

RESUMEN

A shift from temperature-limited to water-limited tree performance is occurring at around 60°N latitude across the circumboreal biome, in concord with current warming trends. This shift is likely to induce extensive vegetation changes and forest die-back, and also to exacerbate biotic outbreaks and wildfires, affecting the global carbon budget. We used carbon isotope discrimination (Δ13C) in tree rings to analyze the long-term physiological responses of five representative species that coexist in the middle taiga of Western Siberia, including dark-needled, drought-susceptible (Abies sibirica, Picea obovata, Pinus sibirica) and light-needled, drought-resistant (Larix sibirica, Pinus sylvestris) conifers. We hypothesized that droughts are differentially imprinted in dark and light conifers, with stronger Δ13C-responsiveness in the latter reflecting a more conservative water use. We found similar Δ13C-climate relationships related to the moisture regime of the summer season across species, indicating shared drought responses; however, divergent intrinsic water-use efficiency (WUEi) trajectories from 1950 to 2013 were observed for pines (increasing by ca. 10%) and other conifers (increasing by ca. 25%). These contrasting patterns suggested the passive and active stomatal regulation of gas exchange in these trees, respectively, and led us to discard our initial hypothesis. Discriminant analysis shed light on the climate characteristics responsible for such differential behavior, with years having lower temperatures from May through August (3 °C colder on average) being responsible for reduced pine WUEi. This finding may be related to the higher plasticity of phenology of pines and the greater susceptibility of fir and spruce to cold damage and heat shock during the early growing season (late April-May). Together with recent negative growth trends and increasing ring-width vs. Δ13C coupling, these results indicate the greater susceptibility of spruce and fir, compared with pines and larch, in boreal ecosystems when transitioning from a temperature- to a moisture-sensitive regime.


Asunto(s)
Sequías , Tracheophyta , Bosques , Siberia , Taiga , Agua
9.
Tree Physiol ; 40(5): 591-604, 2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32159804

RESUMEN

Individual differences in the access to deep soil water pools may explain the differential damage among coexisting, conspecific trees as a consequence of drought-induced dieback. We addressed this issue by comparing the responses to a severe drought of three Mediterranean oak species with different drought tolerance, Quercus pubescens L. and Quercus frainetto Ten., mainly thriving at xeric and mesic sites, respectively, and Quercus cerris L., which dominates at intermediate sites. For each species, we compared coexisting declining (D) and non-declining (ND) trees. The stable isotope composition (δ2H, δ18O) of xylem and soil water was used to infer a differential use of soil water sources. We also measured tree size and radial growth to quantify the long-term divergence of wood production between D and ND trees and non-structural carbohydrates (NSCs) in sapwood to evaluate if D trees presented lower NSC values. The ND trees had access to deeper soil water than D trees except in Q. frainetto, as indicated by significantly more depleted xylem water values. However, a strong δ2H offset between soil and xylem water isotopes observed in peak summer could suggest that both tree types were not physiologically active under extreme drought conditions. Alternative processes causing deuterium fractionation, however, could not be ruled out. Tree height and recent (last 15-25 years) growth rates in all species studied were lower in D than in ND trees by 22 and 44%, respectively. Lastly, there was not a consistent pattern of NSC sapwood concentration; in Q. pubescens, it was higher in ND trees while in Q. frainetto, the D trees were the ones exhibiting the higher NSC concentration. We conclude that the vulnerability to drought among conspecific Mediterranean oaks depends on the differential access to deep soil water pools, which may be related to differences in rooting depth, tree size and growth rate.


Asunto(s)
Quercus , Sequías , Suelo , Árboles , Agua
10.
PLoS One ; 15(3): e0229398, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32160202

RESUMEN

The El Argar society of the Bronze Age in the southeast of the Iberian Peninsula (2200-1550 cal BCE) was among the first complex societies in Europe. Its economy was based on cereal cultivation and metallurgy, it was organized hierarchically, and successively expanded its territory. Most of the monumentally fortified settlements lay on steeply sloped mountains, separated by fertile plains, and allowed optimal control of the area. Here, we explore El Argar human diets, animal husbandry strategies, and food webs using stable carbon and nitrogen isotope analysis of charred cereal grains as well as human and animal bone collagen. The sample comprised 75 human individuals from the sites of La Bastida (n = 52) and Gatas (n = 23), 32 domesticated and wild animals as well as 76 barley and 29 wheat grains from two chronological phases of a total time span of ca. 650 years. The grains indicate extensive cereal cultivation under rain-fed conditions with little to moderate application of manure. Especially at La Bastida, crops and their by-products contributed significantly to the forage of the domesticated animals, which attests to a strong interrelation of cultivation and animal husbandry. Trophic level spacing and Bayesian modelling confirm that human diets were largely based on barley with some contribution of meat or dairy products. A cross-sectional analysis of bone collagen suggests that children were breastfed until about 1.5-2 years old, and infants from Gatas may have suffered from more metabolic stress than those at La Bastida. Adults of both sexes consumed similar diets that reflect social and chronological variation to some extent. Despite significantly higher δ13C and δ15N values at La Bastida than at Gatas, the isotopic data of the staple crops and domestic animals from both sites indicate that such differences do not necessarily correspond to different average human diets, but to agricultural strategies. These results urge for a reassessment of previous isotope studies in which only human remains have been taken into account. The study highlights that disentangling the complex influences on human isotope compositions requires a firm set of comparative data.


Asunto(s)
Isótopos de Carbono/análisis , Dieta/historia , Isótopos de Nitrógeno/análisis , Adolescente , Adulto , Crianza de Animales Domésticos , Animales , Animales Domésticos , Animales Salvajes , Arqueología , Huesos/química , Niño , Preescolar , Productos Agrícolas , Grano Comestible , Femenino , Historia Antigua , Humanos , Lactante , Masculino , España , Adulto Joven
11.
Ann Bot ; 124(7): 1161-1172, 2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31115443

RESUMEN

BACKGROUND AND AIMS: Understanding inter-population variation in the allocation of resources to specific anatomical compartments and physiological processes is crucial to disentangle adaptive patterns in forest species. This work aims to evaluate phenotypic integration and trade-offs among functional traits as determinants of life history strategies in populations of a circum-Mediterranean pine that dwells in environments where water and other resources are in limited supply. METHODS: Adult individuals of 51 populations of Pinus halepensis grown in a common garden were characterized for 11 phenotypic traits, including direct and indirect measures of water uptake at different depths, leaf area, stomatal conductance, chlorophyll content, non-structural carbohydrates, stem diameter and tree height, age at first reproduction and cone production. The population differentiation in these traits was tested through analysis of variance (ANOVA). The resulting populations' means were carried forward to a structural equation model evaluating phenotypic integration between six latent variables (summer water uptake depth, summer transpiration, spring photosynthetic capacity, growth, reserve accumulation and reproduction). KEY RESULTS: Water uptake depth and transpiration covaried negatively among populations, as the likely result of a common selective pressure for drought resistance, while spring photosynthetic capacity was lower in populations originating from dry areas. Transpiration positively influenced growth, while growth was negatively related to reproduction and reserves among populations. Water uptake depth negatively influenced reproduction. CONCLUSIONS: The observed patterns indicate a differentiation in life cycle features between fast-growing and slow-growing populations, with the latter investing significantly more in reproduction and reserves. We speculate that such contrasting strategies result from different arrays of life history traits underlying the very different ecological conditions that the Aleppo pine must face across its distribution range. These comprise, principally, drought as the main stressor and fire as the main ecological disturbance of the Mediterranean basin.


Asunto(s)
Rasgos de la Historia de Vida , Pinus , Sequías , Análisis de Clases Latentes , Fenotipo
12.
Sci Total Environ ; 698: 134055, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31499349

RESUMEN

An improved understanding of how tree species will respond to warmer conditions and longer droughts requires comparing their responses across different environmental settings and considering a multi-proxy approach. We used several traits (tree-ring width, formation of intra-annual density fluctuations - IADFs, wood anatomy, Δ13C and δ18O records) to retrospectively quantify these responses in three conifers inhabiting drought-prone areas in northwestern Mexico. A fir species (Abies durangensis) was studied in a higher altitude and slightly rainier site and two pine species were sampled in a nearby, lower drier site (Pinus engelmannii, Pinus cembroides). Tree-ring-width indices (TRWi) of the studied species showed a very similar year-to-year variability likely indicating a common climatic signal. Wood anatomy analyses done over 3.5 million measured cells, showed that P. cembroides lumen area was much smaller than in the other two species and it remained constant along all the studied period (over 64 years). Instead, cell wall thickness was widest in P. engelmannii and this species presented the highest amount of intra-annual density fluctuations. Climate and wood anatomy correlations pointed out that lumen area was positively affected by winter precipitation for all studied species, while cell-wall thickness was negatively affected by this season's precipitation in all species but P. cembroides. Stable isotope analysis showed significantly lower values of Δ13C for P. cembroides and no significant δ18O differences between the three species, although they shared a common decreasing trend. With very distinct wood anatomical traits (smaller cells, compact morphology), P. cembroides stood out as the better adapted species in its current environment and could be less affected by future drier climate. P. engelmannii and A. durangensis showed high plasticity at wood anatomical level, allowing them to promptly respond to seasonal water availability but likely gives few advantages on future climate scenarios with longer and frequent drought spells.


Asunto(s)
Sequías , Tracheophyta/fisiología , Monitoreo del Ambiente , México , Tracheophyta/anatomía & histología , Madera/química
13.
Plant Cell Environ ; 40(7): 1153-1162, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28098350

RESUMEN

There is increasing evidence that the circadian clock is a significant driver of photosynthesis that becomes apparent when environmental cues are experimentally held constant. We studied whether the composition of photosynthetic pigments is under circadian regulation, and whether pigment oscillations lead to rhythmic changes in photochemical efficiency. To address these questions, we maintained canopies of bean and cotton, after an entrainment phase, under constant (light or darkness) conditions for 30-48 h. Photosynthesis and quantum yield peaked at subjective noon, and non-photochemical quenching peaked at night. These oscillations were not associated with parallel changes in carbohydrate content or xanthophyll cycle activity. We observed robust oscillations of Chl a/b during constant light in both species, and also under constant darkness in bean, peaking when it would have been night during the entrainment (subjective nights). These oscillations could be attributed to the synthesis and/or degradation of trimeric light-harvesting complex II (reflected by the rhythmic changes in Chl a/b), with the antenna size minimal at night and maximal around subjective noon. Considering together the oscillations of pigments and photochemistry, the observed pattern of changes is counterintuitive if we assume that the plant strategy is to avoid photodamage, but consistent with a strategy where non-stressed plants maximize photosynthesis.


Asunto(s)
Ritmo Circadiano/fisiología , Gossypium/fisiología , Phaseolus/fisiología , Fotosíntesis/fisiología , Pigmentos Biológicos/metabolismo , Metabolismo de los Hidratos de Carbono , Clorofila/metabolismo , Clorofila A , Hojas de la Planta/metabolismo
14.
Gigascience ; 5(1): 43, 2016 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-27765071

RESUMEN

BACKGROUND: Molecular clocks drive oscillations in leaf photosynthesis, stomatal conductance, and other cell and leaf-level processes over ~24 h under controlled laboratory conditions. The influence of such circadian regulation over whole-canopy fluxes remains uncertain; diurnal CO2 and H2O vapor flux dynamics in the field are currently interpreted as resulting almost exclusively from direct physiological responses to variations in light, temperature and other environmental factors. We tested whether circadian regulation would affect plant and canopy gas exchange at the Montpellier European Ecotron. Canopy and leaf-level fluxes were constantly monitored under field-like environmental conditions, and under constant environmental conditions (no variation in temperature, radiation, or other environmental cues). RESULTS: We show direct experimental evidence at canopy scales of the circadian regulation of daytime gas exchange: 20-79 % of the daily variation range in CO2 and H2O fluxes occurred under circadian entrainment in canopies of an annual herb (bean) and of a perennial shrub (cotton). We also observed that considering circadian regulation improved performance by 8-17 % in commonly used stomatal conductance models. CONCLUSIONS: Our results show that circadian controls affect diurnal CO2 and H2O flux patterns in entire canopies in field-like conditions, and its consideration significantly improves model performance. Circadian controls act as a 'memory' of the past conditions experienced by the plant, which synchronizes metabolism across entire plant canopies.


Asunto(s)
Dióxido de Carbono/análisis , Ritmo Circadiano , Hojas de la Planta/metabolismo , Agua/análisis , Relojes Circadianos , Ecosistema , Gossypium/fisiología , Phaseolus/fisiología , Fotosíntesis , Estomas de Plantas/metabolismo
15.
Plant Sci ; 251: 110-118, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27593469

RESUMEN

The study of intra-specific variations in growth and plant physiological response to drought is crucial to understand the potential for plant adaptation to global change. Carbon isotope composition (δ(13)C) in plant tissues offers an integrated measure of intrinsic water-use efficiency (WUEi). The intra-specific association between δ(13)C and productivity has been extensively studied in herbaceous crops, but species-specific information on woody plants is still limited and has so far provided contradictory results. In this work we explored the general patterns of the relationship between δ(13)C and growth traits (height, diameter and biomass) using a meta-analysis. We compiled information from 49 articles, including 176 studies performed on 34 species from 16 genera. We found a positive global intra-specific correlation between δ(13)C and growth (Gr=0.28, P<0.0001), stronger for biomass than for height, and non-significant for diameter. The extent of this intra-specific association increased from Mediterranean to subtropical, temperate and boreal biomes, i.e. from water-limited to energy-limited environments. Conifers and shrubs, but not broadleaves, showed consistent positive intra-specific correlations. The meta-analysis also revealed that the relationship between δ(13)C and growth is better characterized at juvenile stages, under near-optimal and controlled conditions, and by analyzing δ(13)C in leaves rather than in wood.


Asunto(s)
Carbono/metabolismo , Plantas/metabolismo , Adaptación Fisiológica , Clima , Cambio Climático , Conservación de los Recursos Naturales , Sequías , Ambiente , Variación Genética , Desarrollo de la Planta , Plantas/genética , Especificidad de la Especie
16.
Tree Physiol ; 36(6): 682-93, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27083522

RESUMEN

Atmospheric carbon dioxide (CO2) concentrations are expected to increase throughout this century, potentially fostering tree growth. A wealth of studies have examined the variation in CO2 responses across tree species, but the extent of intraspecific variation in response to elevated CO2 (eCO2) has, so far, been examined in individual studies and syntheses of published work are currently lacking. We conducted a meta-analysis on the effects of eCO2 on tree growth (height, stem biomass and stem volume) and photosynthesis across genotypes to examine whether there is genetic variation in growth responses to eCO2 and to understand their dependence on photosynthesis. We additionally examined the interaction between the responses to eCO2 and ozone (O3), another global change agent. Most of the published studies so far have been conducted in juveniles and in Populus spp., although the patterns observed were not species dependent. All but one study reported significant genetic variation in stem biomass, and the magnitude of intraspecific variation in response to eCO2 was similar in magnitude to previous analyses on interspecific variation. Growth at eCO2 was predictable from growth at ambient CO2 (R(2) = 0.60), and relative rankings of genotype performance were preserved across CO2 levels, indicating no significant interaction between genotypic and environmental effects. The growth response to eCO2 was not correlated with the response of photosynthesis (P > 0.1), and while we observed 57.7% average increases in leaf photosynthesis, stem biomass and volume increased by 36 and 38.5%, respectively, and height only increased by 9.5%, suggesting a predominant role for carbon allocation in ultimately driving the response to eCO2 Finally, best-performing genotypes under eCO2 also responded better under eCO2 and elevated O3 Further research needs include widening the study of intraspecific variation beyond the genus Populus and examining the interaction between eCO2 and other environmental stressors. We conclude that significant potential to foster CO2-induced productivity gains through tree breeding exists, that these programs could be based upon best-performing genotypes under ambient conditions and that they would benefit from an increased understanding on the controls of allocation.


Asunto(s)
Dióxido de Carbono/farmacología , Árboles/crecimiento & desarrollo , Árboles/metabolismo , Ozono/toxicidad
17.
Proc Natl Acad Sci U S A ; 113(3): 662-7, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26729860

RESUMEN

Forests play a key role in the carbon balance of terrestrial ecosystems. One of the main uncertainties in global change predictions lies in how the spatiotemporal dynamics of forest productivity will be affected by climate warming. Here we show an increasing influence of climate on the spatial variability of tree growth during the last 120 y, ultimately leading to unprecedented temporal coherence in ring-width records over wide geographical scales (spatial synchrony). Synchrony in growth patterns across cold-constrained (central Siberia) and drought-constrained (Spain) Eurasian conifer forests have peaked in the early 21st century at subcontinental scales (∼ 1,000 km). Such enhanced synchrony is similar to that observed in trees co-occurring within a stand. In boreal forests, the combined effects of recent warming and increasing intensity of climate extremes are enhancing synchrony through an earlier start of wood formation and a stronger impact of year-to-year fluctuations of growing-season temperatures on growth. In Mediterranean forests, the impact of warming on synchrony is related mainly to an advanced onset of growth and the strengthening of drought-induced growth limitations. Spatial patterns of enhanced synchrony represent early warning signals of climate change impacts on forest ecosystems at subcontinental scales.


Asunto(s)
Cambio Climático , Bosques , Árboles/crecimiento & desarrollo , Modelos Lineales , Siberia , España , Especificidad de la Especie , Factores de Tiempo
18.
New Phytol ; 208(4): 1031-41, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26193768

RESUMEN

The relevance of interspecific variation in the use of plant water sources has been recognized in drought-prone environments. By contrast, the characterization of intraspecific differences in water uptake patterns remains elusive, although preferential access to particular soil layers may be an important adaptive response for species along aridity gradients. Stable water isotopes were analysed in soil and xylem samples of 56 populations of the drought-avoidant conifer Pinus halepensis grown in a common garden test. We found that most populations reverted to deep soil layers as the main plant water source during seasonal summer droughts. More specifically, we detected a clear geographical differentiation among populations in water uptake patterns even under relatively mild drought conditions (early autumn), with populations originating from more arid regions taking up more water from deep soil layers. However, the preferential access to deep soil water was largely independent of aboveground growth. Our findings highlight the high plasticity and adaptive relevance of the differential access to soil water pools among Aleppo pine populations. The observed ecotypic patterns point to the adaptive relevance of resource investment in deep roots as a strategy towards securing a source of water in dry environments for P. halepensis.


Asunto(s)
Adaptación Fisiológica/genética , Sequías , Ecotipo , Variación Genética , Pinus/genética , Estrés Fisiológico , Agua/metabolismo , Región Mediterránea , Pinus/fisiología , Estaciones del Año , Suelo/química , Xilema/metabolismo
19.
New Phytol ; 207(3): 914-27, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25790288

RESUMEN

Stable isotopes are extensively used as tracers for the study of plant-water sources. Isotope-ratio infrared spectroscopy (IRIS) offers a cheaper alternative to isotope-ratio mass spectroscopy (IRMS), but its use in studying plant and soil water is limited by the spectral interference caused by organic contaminants. Here, we examine two approaches to cope with contaminated samples in IRIS: on-line oxidation of organic compounds (MCM) and post-processing correction. We assessed these methods compared to IRMS across 136 samples of xylem and soil water, and a set of ethanol- and methanol-water mixtures. A post-processing correction significantly improved IRIS accuracy in both natural samples and alcohol dilutions, being effective with concentrations up to 8% of ethanol and 0.4% of methanol. MCM outperformed the post-processing correction in removing methanol interference, but did not effectively remove interference for high concentrations of ethanol. By using both approaches, IRIS can overcome with reasonable accuracy the analytical uncertainties associated with most organic contaminants found in soil and xylem water. We recommend the post-processing correction as the first choice for analysis of samples of unknown contamination. Nevertheless, MCM can be more effective for evaluating samples containing contaminants responsible for strong spectral interferences at low concentrations, such as methanol.


Asunto(s)
Plantas/química , Espectrofotometría Infrarroja/métodos , Agua/química , Deuterio , Etanol/química , Funciones de Verosimilitud , Metanol/química , Compuestos Orgánicos/aislamiento & purificación , Isótopos de Oxígeno , Contaminantes Químicos del Agua/aislamiento & purificación
20.
Glob Chang Biol ; 21(3): 1213-25, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25359123

RESUMEN

Vegetation in water-limited ecosystems relies strongly on access to deep water reserves to withstand dry periods. Most of these ecosystems have shallow soils over deep groundwater reserves. Understanding the functioning and functional plasticity of species-specific root systems and the patterns of or differences in the use of water sources under more frequent or intense droughts is therefore necessary to properly predict the responses of seasonally dry ecosystems to future climate. We used stable isotopes to investigate the seasonal patterns of water uptake by a sclerophyll forest on sloped terrain with shallow soils. We assessed the effect of a long-term experimental drought (12 years) and the added impact of an extreme natural drought that produced widespread tree mortality and crown defoliation. The dominant species, Quercus ilex, Arbutus unedo and Phillyrea latifolia, all have dimorphic root systems enabling them to access different water sources in space and time. The plants extracted water mainly from the soil in the cold and wet seasons but increased their use of groundwater during the summer drought. Interestingly, the plants subjected to the long-term experimental drought shifted water uptake toward deeper (10-35 cm) soil layers during the wet season and reduced groundwater uptake in summer, indicating plasticity in the functional distribution of fine roots that dampened the effect of our experimental drought over the long term. An extreme drought in 2011, however, further reduced the contribution of deep soil layers and groundwater to transpiration, which resulted in greater crown defoliation in the drought-affected plants. This study suggests that extreme droughts aggravate moderate but persistent drier conditions (simulated by our manipulation) and may lead to the depletion of water from groundwater reservoirs and weathered bedrock, threatening the preservation of these Mediterranean ecosystems in their current structures and compositions.


Asunto(s)
Sequías , Árboles/fisiología , Agua/metabolismo , Hidrología , Longevidad , Estaciones del Año , España , Especificidad de la Especie , Árboles/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...