Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
DNA Res ; 23(5): 495-505, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27402867

RESUMEN

Ehrlichia chaffeensis is an obligate intracellular tick-borne bacterium which causes the disease, human monocytic ehrlichiosis. Ehrlichia chaffeensis contains only two sigma factors, σ32 and σ70. It is difficult to study E. chaffeensis gene regulation due to lack of a transformation system. We developed an Escherichia coli-based transcription system to study E. chaffeensis transcriptional regulation. An E. coli strain with its σ70 repressed with trp promoter is used to express E. chaffeensis σ70. The E. coli system and our previously established in vitro transcription system were used to map transcriptional differences of two Ehrlichia genes encoding p28-outer membrane proteins 14 and 19. We mapped the -10 and -35 motifs and the AT rich spacers located between the two motifs by performing detailed mutational analysis. Mutations within the -35 motif of the genes impacted transcription differently, while -10 motif deletions had no impact. The AT-rich spacers also contributed to transcriptional differences. We further demonstrated that the domain 4.2 of E. chaffeensis σ70 is important for regulating promoter activity and the deletion of region 1.1 of E. chaffeensis σ70 causes enhancement of the promoter activity. This is the first study defining the promoters of two closely related E. chaffeensis genes.

2.
PLoS One ; 8(11): e81780, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24278458

RESUMEN

Bacterial gene transcription is initiated by RNA polymerase containing a sigma factor. To understand gene regulation in Ehrlichia chaffeensis, an important tick-transmitted rickettsiae responsible for human monocytic ehrlichiosis, we initiated studies evaluating the transcriptional machinery of several genes of this organism. We mapped the transcription start sites of 10 genes and evaluated promoters of five genes (groE, dnaK, hup, p28-Omp14 and p28-Omp19 genes). We report here that the RNA polymerase binding elements of E. chaffeensis gene promoters are highly homologous for its only two transcription regulators, sigma 32 and sigma 70, and that gene expression is accomplished by either of the transcription regulators. RNA analysis revealed that although transcripts for both sigma 32 and sigma 70 are upregulated during the early replicative stage, their expression patterns remained similar for the entire replication cycle. We further present evidence demonstrating that the organism's -35 motifs are essential to transcription initiations. The data suggest that E. chaffeensis gene regulation has evolved to support the organism's growth, possibly to facilitate its intraphagosomal growth. Considering the limited availability of genetic tools, this study offers a novel alternative in defining gene regulation in E. chaffeensis and other related intracellular pathogens.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Ehrlichia chaffeensis/genética , Genes Bacterianos , Transcripción Genética , Secuencia de Aminoácidos , Secuencia de Bases , Cartilla de ADN , ARN Polimerasas Dirigidas por ADN/química , Ensayo de Cambio de Movilidad Electroforética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Reacción en Cadena en Tiempo Real de la Polimerasa , Recombinación Genética , Homología de Secuencia de Aminoácido
3.
Int J Med Microbiol ; 303(1): 40-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23306065

RESUMEN

Ehrlichia chaffeensis is a Gram-negative, obligate intracellular bacterium which causes the tick-borne disease human monocytic ehrlichiosis. In vertebrates, E. chaffeensis replicates in monocytes and macrophages. However, no clear cell or tissue tropism has been defined in arthropods. Our group identified two host genes that control E. chaffeensis replication and infection in vivo in Drosophila, Uridine cytidine kinase and separation anxiety. Using the UAS-GAL4 RNAi system, we generated F1 flies (UAS-gene of interestRNAi x tissue-GAL4 flies) that have Uck2 or san silenced in ubiquitous or tissue-specific fashion. When Uck2 or san were suppressed in the hemocytes or in the fat body, E. chaffeensis replicated poorly and caused significantly less severe infections. Silencing of these genes in the eyes, wings, or the salivary glands did not impact fly susceptibility or bacterial replication. Our data suggest that in Drosophila, E. chaffeensis replicates within the hemocytes, the insect homolog of mammalian macrophages, and in the fat body, the liver homolog of mammals.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/microbiología , Ehrlichia chaffeensis/fisiología , Ehrlichiosis/microbiología , Animales , Línea Celular , Perros , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Ehrlichia chaffeensis/genética , Ehrlichia chaffeensis/crecimiento & desarrollo , Ojo/microbiología , Cuerpo Adiposo/microbiología , Femenino , Silenciador del Gen , Hemocitos/microbiología , Interacciones Huésped-Patógeno , Humanos , Macrófagos/microbiología , Masculino , Monocitos/microbiología , Especificidad de Órganos , Interferencia de ARN , ARN Bacteriano/genética , Análisis de Supervivencia , Uridina Quinasa/genética , Alas de Animales/microbiología
4.
Infect Immun ; 80(10): 3576-86, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22851751

RESUMEN

Ehrlichia chaffeensis is an obligate intracellular bacterium that causes human monocytic ehrlichiosis (HME). To determine what host components are important for bacterial replication, we performed microarray analysis on Drosophila melanogaster S2 cells by comparing host gene transcript levels between permissive and nonpermissive conditions for E. chaffeensis growth. Five-hundred twenty-seven genes had increased transcript levels unique to permissive growth conditions 24 h postinfection. We screened adult flies that were mutants for several of the "permissive" genes for the ability to support Ehrlichia replication. Three additional D. melanogaster fly lines with putative mutations in pyrimidine metabolism were also tested. Ten fly lines carrying mutations in the genes CG6479, separation anxiety, chitinase 11, CG6364 (Uck2), CG6543 (Echs1), withered (whd), CG15881 (Ccdc58), CG14806 (Apop1), CG11875 (Nup37), and dumpy (dp) had increased resistance to infection with Ehrlichia. Analysis of RNA by quantitative real-time reverse transcription-PCR (qRT-PCR) confirmed that the bacterial load was decreased in these mutant flies compared to wild-type infected control flies. Seven of these genes (san, Cht11, Uck2, Echs1, whd, Ccdc58, and Apop1) encoded proteins that had mitochondrial functions or could be associated with proteins with mitochondrial functions. Treatment of THP-1 cells with double-stranded RNA to silence the human UCK2 gene indicates that the disruption of the uridine-cytidine kinase affects E. chaffeensis replication in human macrophages. Experiments with cyclopentenyl cytosine (CPEC), a CTP synthetase inhibitor and cytosine, suggest that the nucleotide salvage pathway is essential for E. chaffeensis replication and that it may be important for the provision of CTP, uridine, and cytidine nucleotides.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Ehrlichia chaffeensis/fisiología , Ehrlichiosis/inmunología , Regulación de la Expresión Génica/inmunología , Animales , Diferenciación Celular , Línea Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/microbiología , Ehrlichiosis/genética , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Células Precursoras de Granulocitos/metabolismo , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Análisis por Matrices de Proteínas , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Uridina Quinasa/genética , Uridina Quinasa/metabolismo
5.
Dev Biol ; 360(1): 208-15, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21983201

RESUMEN

The Drosophila neuroectoderm is initially subdivided into three longitudinal domains that give rise to columns of neuroblasts. This subdivision is coordinately accomplished by the action of the signaling pathways, Dorsal and Epidermal Growth Factor Receptor (EGFR), in conjunction with the homeodomain proteins, Ventral nervous system defective, Intermediate neuroblasts defective (Ind) and Muscle Segment Homeobox. We previously demonstrated that Ind expression is activated in response to the EGFR pathway. Here we show that EGF signaling subsequently mediates the direct phosphorylation of Ind by MAP kinase, which enhances the capacity of Ind to repress target genes, such as achaete. Specifically, we show that reduced EGF signaling results in diminished repression of achaete in the intermediate column, despite the presence of high levels of Ind protein. We also demonstrate that ectopic activation of MAP kinase results in the lateral expansion of the Ind expression domain with a corresponding reduction in achaete expression. This regulation is also dependent on the co-repressor, Dichaete. Our data indicate that EGF signaling, acting through MAP kinase, impinges on multiple aspects of Ind regulatory activity. While it has been often demonstrated that MAP kinase phosphorylation of transcriptional repressors attenuates their repressor activity, here we provide an example of phosphorylation enhancing repressor activity.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Proteínas de Homeodominio/metabolismo , Sistema de Señalización de MAP Quinasas , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Cartilla de ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Factor de Crecimiento Epidérmico/genética , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , Proteínas de Homeodominio/genética , Mutagénesis Sitio-Dirigida , Neurogénesis , Fosforilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción SOX/genética , Factores de Transcripción SOX/metabolismo
6.
Curr Biol ; 21(13): 1102-10, 2011 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-21683597

RESUMEN

BACKGROUND: Signaling by receptor tyrosine kinase (RTK) pathways plays fundamental roles in processes of cell-fate determination, often through the induction of specific transcriptional responses. Yet it is not fully understood how continuous target gene expression, required for irreversible cell-fate specification, is preserved after RTK signaling has ended. Here we address this question using the Drosophila embryo, a model system that has been instrumental in elucidating the developmental functions of RTK signal transduction. RESULTS: The Groucho corepressor is phosphorylated and downregulated in response to RTK signaling. Here we show that RTK pathways use Groucho phosphorylation as a general mechanism for inducing expression of pathway target genes encoding cell-fate determinants as well as feedback antagonists, indicating that relief of Groucho-dependent repression is an integral element of RTK signaling networks. We further demonstrate that after mitogen-activated protein kinase (MAPK) has been deactivated, sustained phosphorylation of Groucho is essential for persistent RTK-induced target gene expression and cell-fate determination in several developmental contexts. CONCLUSIONS: Phosphorylation of Groucho by MAPK plays a dual role in the regulation of RTK responses: (1) it mediates rapid feedback inhibition, and (2) it provides a stable memory mechanism of past MAPK activity. We propose that, in this manner, phosphorylation of Groucho enables transiently active RTK pathways to fix the spatiotemporal expression profiles of downstream targets over time.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Drosophila/embriología , Drosophila/genética , Retroalimentación Fisiológica , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/fisiología , Proteínas Represoras/genética , Proteínas Represoras/fisiología
7.
Insect Biochem Mol Biol ; 40(11): 814-23, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20705134

RESUMEN

A Disintegrin And Metalloprotease (ADAM) proteins belong to the metzincin superfamily of metalloproteases that are known to play important roles in several physiological and developmental processes including myoblast fusion, tumor necrosis factor-α release or fertilization. They are characterized by a typical domain structure with a proteolytically active domain and the protein binding domains both facing the extracellular space. Regulatory mechanisms are largely unknown. Here we report on the potential of the Drosophila ADAM Meltrin to form oligomers via its substrate binding domain. Significantly, oligomerization occurs apparently in a redox-dependent manner. Further analysis revealed that the ACR domain is responsible for aggregation while the disintegrin-like and EGF-like domains are not capable of oligomer formation. Stage dependent transcript analysis revealed a constant expression of three different splice variants, two of which were characterized by sequencing. Like many other ADAM proteins, Meltrin shows a highly restricted expression pattern during embryogenesis with at least two of the respective transcripts being present in a subpopulation of neuronal cells in the embryonic central nervous system. Finally, we report on the identification of the first regulator of meltrin: the homeobox protein ventral nervous system defective specifically excludes Meltrin expression from the embryonic ventral neuroectoderm.


Asunto(s)
Proteínas ADAM/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Embrión no Mamífero/enzimología , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Drosophila melanogaster/embriología , Desarrollo Embrionario , Oxidación-Reducción , Polimerizacion , Isoformas de Proteínas , Estructura Terciaria de Proteína
8.
Dev Dyn ; 238(11): 2735-44, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19795518

RESUMEN

The Drosophila neurectoderm is initially subdivided across the dorsoventral (DV) axis into three domains that are defined by the expression of three homeodomain containing proteins. These are from ventral to dorsal: Ventral nervous system defective (vnd), Intermediate neuroblasts defective (ind) and Muscle segment homeobox (msh). This is remarkably similar to the distribution of the orthologous homeodomain proteins in the developing neural tube of mice and Zebrafish. This pattern is partially governed by a 'ventral dominance' mechanism, in which Vnd represses ind and Ind represses msh. A major unanswered question in this process is: How does Ind direct positioning of the ventral border of msh expression. Toward this goal, we have identified regulatory DNA essential for expression of msh in the early neurectoderm. In addition, we demonstrated that Ind acts directly in this element by a combination of genetic and molecular experiments. Specifically, expression is expanded ventrally in ind mutant embryos and Ind protein directly and specifically bound to the msh regulatory DNA, and this interaction was required to limit the ventral boundary of msh expression.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Proteínas de Homeodominio/metabolismo , Placa Neural/metabolismo , Animales , ADN/genética , ADN/fisiología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Placa Neural/embriología , Secuencias Reguladoras de Ácidos Nucleicos/genética , Secuencias Reguladoras de Ácidos Nucleicos/fisiología , Factores de Transcripción/metabolismo
9.
Infect Immun ; 77(11): 4815-26, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19687202

RESUMEN

Ehrlichia chaffeensis is an obligate, intracellular bacterium, transmitted by the tick Amblyomma americanum, and is the causative agent of human monocytic ehrlichiosis infections. We previously demonstrated that E. chaffeensis is capable of growing in Drosophila S2 cells. Therefore, we tested the hypothesis that E. chaffeensis can infect adult Drosophila melanogaster. Adult Drosophila organisms were experimentally challenged with intra-abdominal injections of bacteria. Ehrlichia-infected flies showed decreased survival compared to wild-type flies, and bacteria isolated from flies could reinfect mammalian macrophages. Ehrlichia infections activated both the cellular and humoral immune responses in the fly. Hemocytes phagocytosed bacteria after injection, and antimicrobial peptide pathways were induced following infection. Increased pathogenicity in flies carrying mutations in genes in both the Toll and Imd pathways suggests that both immune defense pathways participate in host defense. Induction of Drosophila cellular and humoral responses and the in vivo replication of E. chaffeensis suggests that D. melanogaster is a suitable host for E. chaffeensis. In the future, it will be a useful tool to unlock some of the in vivo mysteries of this arthropod-borne bacterium.


Asunto(s)
Drosophila melanogaster/microbiología , Ehrlichia chaffeensis/fisiología , Ehrlichiosis/inmunología , Interacciones Huésped-Parásitos/fisiología , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/inmunología , Drosophila melanogaster/inmunología , Ehrlichiosis/genética , Femenino , Masculino , Mutación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Receptores Toll-Like/genética , Receptores Toll-Like/inmunología
10.
Mech Dev ; 126(7): 552-62, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19348939

RESUMEN

Specification of cell fates across the dorsoventral axis of the central nervous system in Drosophila involves the subdivision of the neuroectoderm into three domains that give rise to three columns of neural precursor cells called neuroblasts. Ventral nervous system defective (Vnd), intermediate neuroblasts defective (Ind) and muscle segment homeobox (Msh) are expressed in the three columns from ventral to dorsal, respectively. The products of these genes play multiple important roles in formation and specification of the embryonic nervous system. Ind, for example, is known to play roles in two important processes. First, Ind is essential for formation of neuroblasts conjunction with SoxB class transcription factors. Sox class transcription factors are known to specify neural stem cells in vertebrates. Second, Ind plays an important role in patterning the CNS in conjunction with, vnd and msh, which is also similar to how vertebrates pattern their neural tube. This work focuses two important aspects of Ind function. First, we used multiple approaches to identify and characterize specific domains within the protein that confer repressor or activator ability. Currently, little is known about the presence of activation or repression domains within Ind. Here, we show that transcriptional repression by Ind requires multiple conserved domains within the protein, and that Ind has a transcriptional activation domain. Specifically, we have identified a novel domain, the Pst domain, that has transcriptional repression ability and appears to act independent of interaction with the co-repressor Groucho. This domain is highly conserved among insect species, but is not found in vertebrate Gsh class homeodomain proteins. Second, we show that Ind can and does repress vnd expression, but does so in a stage specific manner. We conclude from this that the function of Ind in regulating vnd expression is one of refinement and maintenance of the dorsal border.


Asunto(s)
Tipificación del Cuerpo/genética , Sistema Nervioso Central/embriología , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Proteínas de Homeodominio/química , Proteínas de Homeodominio/metabolismo , Proteínas Represoras/química , Activación Transcripcional/genética , Secuencia de Aminoácidos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sistema Nervioso Central/metabolismo , Secuencia Conservada , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Embrión no Mamífero/metabolismo , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Alineación de Secuencia , Factores de Transcripción/metabolismo , Pez Cebra , Proteínas de Pez Cebra/metabolismo
11.
FEBS J ; 275(20): 5062-73, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18795949

RESUMEN

Vnd is a dual transcriptional regulator that is essential for Drosophila dorsal-ventral patterning. Yet, our understanding of the biochemical basis for its regulatory activity is limited. Consistent with Vnd's ability to repress target expression in embryos, endogenously expressed Vnd physically associates with the co-repressor, Groucho, in Drosophila Kc167 cells. Vnd exists as a single complex in Kc167 cells, in contrast with embryonic Vnd, which forms multiple high-molecular-weight complexes. Unlike its vertebrate homolog, Nkx2.2, full-length Vnd can bind its target in electrophoretic mobility shift assay, suggesting that co-factor availability may influence Vnd's weak regulatory activity in transient transfections. We identify the high mobility group 1-type protein, D1, and the novel helix-loop-helix protein, Olig, as novel Vnd-interacting proteins using co-immunoprecipitation assays. Furthermore, we demonstrate that both D1 and Olig are co-expressed with Vnd during Drosophila embryogenesis, consistent with a biological basis for this interaction. We also suggest that the phosphorylation state of Vnd influences its ability to interact with co-factors, because Vnd is extensively phosphorylated in embryos and can be phosphorylated by activated mitogen-activated protein kinase in vitro. These results highlight the complexities of Vnd-mediated regulation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Drosophila , Embrión no Mamífero , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Unión Proteica , Proteínas Represoras/metabolismo
12.
Appl Environ Microbiol ; 74(6): 1886-91, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18245255

RESUMEN

Ehrlichia chaffeensis is an obligate intracellular bacterium and the causative agent of human monocytic ehrlichiosis. Although this pathogen grows in several mammalian cell lines, no general model for eukaryotic cellular requirements for bacteria replication has yet been proposed. We found that Drosophila S2 cells are permissive for the growth of E. chaffeensis. We saw morulae (aggregates of bacteria) by microscopy, detected the E. chaffeensis 16S rRNA gene by reverse transcriptase PCR, and used immunocytochemistry to detect E. chaffeensis in S2 and mammalian cells. Bacteria grown in S2 cells reinfected mammalian macrophages. S2 cells were made nonpermissive for E. chaffeensis through incubation with lipopolysaccharide. Our results demonstrate that S2 cells are an appropriate system for studying the pathogenesis of E. chaffeensis. The use of a Drosophila system has the potential to serve as a model system for studying Ehrlichia due to its completed genome, ease of genetic manipulation, and the availability of mutants.


Asunto(s)
Ehrlichia chaffeensis/crecimiento & desarrollo , Ehrlichia chaffeensis/genética , Animales , Línea Celular , Drosophila , Ehrlichia chaffeensis/efectos de los fármacos , Inmunohistoquímica , Lipopolisacáridos/farmacología , Microscopía Electrónica de Transmisión , ARN Ribosómico 16S/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
13.
Dev Dyn ; 236(12): 3524-31, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17969149

RESUMEN

Initiation and refinement of expression of the Ind homeodomain protein in the Drosophila embryo is coordinately regulated by global dorsoventral patterning pathways Dorsal, Egfr, and Dpp, and well as by Vnd, which positions the ventral boundary of Ind. Therefore, we set out to look for novel regulators of dorsoventral patterning by screening the Exelixis deficiency collection for modified expression of Ind. Indeed, we found deficiencies that remove components of the known signaling pathways had altered or lost ind expression. These findings included deficiencies that remove screw, dpp, and egfr as well as deficiencies that remove ind itself. In addition, we found several deficiencies that had altered or loss of ind expression. We also observed phenotypes suggestive of dorsoventral patterning defects such as twisting during gastrulation, and defects associated with loss of dorsal specification. These include a pair of overlapping deficiencies that produced ventralized embryos. We find that transheterozygotes of these two deficiencies are also ventralized. There are seven genes common to both deficiencies, including CG11582, which encodes a twisted gastrulation-like protein. These two deficiencies are also allelic with shrew mutations. Here, we present data supporting the conclusion that CG11582 is the gene affected in shrew mutants.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/embriología , Drosophila/genética , Genes de Insecto , Proteínas de Homeodominio/genética , Alelos , Secuencia de Aminoácidos , Animales , Clonación Molecular , Drosophila/metabolismo , Receptores ErbB/genética , Femenino , Gastrulación/genética , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Masculino , Datos de Secuencia Molecular , Mutación , Fenotipo , Proteínas Quinasas/genética , Receptores de Péptidos de Invertebrados/genética , Homología de Secuencia de Aminoácido , Transducción de Señal
14.
Mech Dev ; 124(3): 230-6, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17224261

RESUMEN

A maternally established gradient of nuclear Dorsal protein is the first step in subdivision of the Drosophila neurectoderm into stripes of homeodomain gene expression. Dorsal in combination with the EGF and TGFbeta signaling pathways are key regulators of the expression of the genes ventral nervous system defective (vnd), intermediate neuroblasts defective (ind), and muscle segment homeobox (msh) in the developing neurectoderm. These three genes encode homeodomain transcription factors that can repress each other, which ensures adjacent, non-overlapping expression domains. Expression of vnd, ind, and msh is maintained after decline in EGF and TGFbeta signaling, but the relevant positive transcriptional regulators have not yet been defined. Here, we show that Ind can bind DNA with the same sequence specificity as its murine ortholog Gsh1. We have identified a novel upstream regulatory element at the ind locus containing predicted Ind binding sites, and we show that Ind activity is both necessary and sufficient for reporter gene expression from this element. We conclude that Ind can act as a transcriptional activator, and that positive autoregulation of Ind is a mechanism for persistent ind expression within the developing embryonic nervous system.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/genética , Elementos Reguladores de la Transcripción/genética , Animales , Proteínas de Drosophila/biosíntesis , Drosophila melanogaster/embriología , Proteínas de Homeodominio/biosíntesis , Elementos Reguladores de la Transcripción/fisiología
15.
Development ; 131(21): 5221-32, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15456722

RESUMEN

Genes belonging to the Nkx, Gsh and Msx families are expressed in similar dorsovental spatial domains of the insect and vertebrate central nervous system (CNS), suggesting the bilaterian ancestor used this genetic program during CNS development. We have investigated the significance of these similar expression patterns by testing whether Nkx6 proteins expressed in ventral CNS of zebrafish and flies have similar functions. In zebrafish, Nkx6.1 is expressed in early-born primary and later-born secondary motoneurons. In the absence of Nkx6.1, there are fewer secondary motoneurons and supernumerary ventral interneurons, suggesting Nkx6.1 promotes motoneuron and suppresses interneuron formation. Overexpression of fish or fly Nkx6 is sufficient to generate supernumerary motoneurons in both zebrafish and flies. These results suggest that one ancestral function of Nkx6 proteins was to promote motoneuron development.


Asunto(s)
Sistema Nervioso Central/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Neuronas Motoras/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Tipificación del Cuerpo , Sistema Nervioso Central/citología , Secuencia Conservada , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Proteínas Hedgehog , Proteínas de Homeodominio , Humanos , Interneuronas/citología , Interneuronas/metabolismo , Datos de Secuencia Molecular , Neuronas Motoras/citología , Filogenia , Alineación de Secuencia , Transducción de Señal , Transactivadores/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...