Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Bioinformatics ; 40(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38561173

RESUMEN

SUMMARY: The Integrated Database of Small Molecules (IDSM) integrates data from small-molecule datasets, making them accessible through the SPARQL query language. Its unique feature is the ability to search for compounds through SPARQL based on their molecular structure. We extended IDSM to enable mass spectra databases to be integrated and searched for based on mass spectrum similarity. As sources of mass spectra, we employed the MassBank of North America database and the In Silico Spectral Database of natural products. AVAILABILITY AND IMPLEMENTATION: The extension is an integral part of IDSM, which is available at https://idsm.elixir-czech.cz. The manual and usage examples are available at https://idsm.elixir-czech.cz/docs/ms. The source codes of all IDSM parts are available under open-source licences at https://github.com/idsm-src.

2.
Heliyon ; 10(2): e24564, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38298721

RESUMEN

Ameloblastin is a protein in biomineralization of tooth enamel. However recent results indicate that this is probably not its only role in an organism. Enamel matrix formation represents a complex process enabled via specific crosslinking of two proteins - the most abundant amelogenin and the ameloblastin (AMBN). The human AMBN (hAMBN) gene possesses 13 protein coding exons with alternatively spliced transcripts and the longest isoform about 447 amino acid residues. It has been described that AMBN molecules in vitro assemble into oligomers via a sequence encoded by exon 5. Enamel is formed by the processing of enamel proteins by two specific proteases - enamelysin (MMP-20) and kallikrein 4 (KLK-4). The scaffold made of AMEL and non-amelogenin proteins is cleaved and removed from the developed tooth enamel. The hAMBN is expressed in two isoforms (ISO I and II), which could lead to their different utilization determined by distinct proteolytic profiles. In this study, we compared proteolytic profiles of both isoforms of hAMBN expressed in E. coli after proteolysis by MMP-20, KLK-4, and their 1:2 mixture. Proteolysis products were analysed and cleavage sites were identified by mass spectrometry. The proteolytic profiles of two AMBN isoforms showed different results, although we have to determine that the analysed AMBN was not post-translationally modified as expressed in prokaryotic cells. These results may lead to the suggestion of potentially divergent roles of AMBN isoforms cleavage products in various cell signalling pathways such as calcium buffering or signalling cascades.

3.
J Steroid Biochem Mol Biol ; 239: 106464, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38246201

RESUMEN

Endogenous neurosteroids (NS) and their synthetic analogs, neuroactive steroids (NAS), are potentially useful drug-like compounds affecting the pathophysiology of miscellaneous central nervous system disorders (e.g. Alzheimer´s disease, epilepsy, depression, etc.). Additionally, NS have been shown to promote neuron viability and neurite outgrowth upon injury. The molecular, structural and physicochemical basis of the NS effect on neurons is so far not fully understood, and the development of new, biologically relevant assays is essential for their comparative analysis and for assessment of their mechanism of action. Here, we report the development of a novel, plate-based, high-content in vitro assay for screening of NS and newly synthesized, 5ß-reduced NAS for the promotion of postnatal neuron survival and neurite growth using fluorescent, postnatal mixed cortical neuron cultures isolated from thy1-YFP transgenic mice. The screen allows a detailed time course analysis of different parameters, such as the number of neurons or neurite lengths of 7-day, in vitro neuron cultures. Using the screen, we identify a new NAS, compound 42, that promotes the survival and growth of postnatal neurons significantly better than several endogenous NS (dehydroepiandrosterone, progesterone, and allopregnanolone). Interestingly, we demonstrate that compound 42 also promotes the proliferation of glia (in particular oligodendrocytes) and that the glial function is critical for its neuron growth support. Computational analysis of the biological data and calculated physicochemical properties of tested NS and NAS demonstrated that their biological activity is proportional to their lipophilicity. Together, the screen proves useful for the selection of neuron-active NAS and the comparative evaluation of their biologically relevant structural and physicochemical features.


Asunto(s)
Neuroesteroides , Ratones , Animales , Neuronas , Neuritas , Progesterona/farmacología , Oligodendroglía , Ratones Transgénicos
4.
Chem Sci ; 15(2): 594-608, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38179543

RESUMEN

Certain peptide sequences, some of them as short as amino acid triplets, are significantly overpopulated in specific secondary structure motifs in folded protein structures. For example, 74% of the EAM triplet is found in α-helices, and only 3% occurs in the extended parts of proteins (typically ß-sheets). In contrast, other triplets (such as VIV and IYI) appear almost exclusively in extended parts (79% and 69%, respectively). In order to determine whether such preferences are structurally encoded in a particular peptide fragment or appear only at the level of a complex protein structure, NMR, VCD, and ECD experiments were carried out on selected tripeptides: EAM (denoted as pro-'α-helical' in proteins), KAM(α), ALA(α), DIC(α), EKF(α), IYI(pro-ß-sheet or more generally, pro-extended), and VIV(ß), and the reference α-helical CATWEAMEKCK undecapeptide. The experimental data were in very good agreement with extensive quantum mechanical conformational sampling. Altogether, we clearly showed that the pro-helical vs. pro-extended propensities start to emerge already at the level of tripeptides and can be fully developed at longer sequences. We postulate that certain short peptide sequences can be considered minimal "folding seeds". Admittedly, the inherent secondary structure propensity can be overruled by the large intramolecular interaction energies within the folded and compact protein structures. Still, the correlation of experimental and computational data presented herein suggests that the secondary structure propensity should be considered as one of the key factors that may lead to understanding the underlying physico-chemical principles of protein structure and folding from the first principles.

5.
BMC Bioinformatics ; 24(1): 487, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38114921

RESUMEN

BACKGROUND: The specific recognition of a DNA locus by a given transcription factor is a widely studied issue. It is generally agreed that the recognition can be influenced not only by the binding motif but by the larger context of the binding site. In this work, we present a novel heuristic algorithm that can reconstruct the unique binding sites captured in a sequencing experiment without using the reference genome. RESULTS: We present PAPerFly, the Partial Assembly-based Peak Finder, a tool for the binding site and binding context reconstruction from the sequencing data without any prior knowledge. This tool operates without the need to know the reference genome of the respective organism. We employ algorithmic approaches that are used during genome assembly. The proposed algorithm constructs a de Bruijn graph from the sequencing data. Based on this graph, sequences and their enrichment are reconstructed using a novel heuristic algorithm. The reconstructed sequences are aligned and the peaks in the sequence enrichment are identified. Our approach was tested by processing several ChIP-seq experiments available in the ENCODE database and comparing the results of Paperfly and standard methods. CONCLUSIONS: We show that PAPerFly, an algorithm tailored for experiment analysis without the reference genome, yields better results than an aggregation of ChIP-seq agnostic tools. Our tool is freely available at https://github.com/Caeph/paperfly/ or on Zenodo ( https://doi.org/10.5281/zenodo.7116424 ).


Asunto(s)
Algoritmos , Factores de Transcripción , Sitios de Unión , Factores de Transcripción/metabolismo , Secuenciación de Inmunoprecipitación de Cromatina , Genoma , Análisis de Secuencia de ADN/métodos
6.
J Cheminform ; 15(1): 61, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37340506

RESUMEN

Current biological and chemical research is increasingly dependent on the reusability of previously acquired data, which typically come from various sources. Consequently, there is a growing need for database systems and databases stored in them to be interoperable with each other. One of the possible solutions to address this issue is to use systems based on Semantic Web technologies, namely on the Resource Description Framework (RDF) to express data and on the SPARQL query language to retrieve the data. Many existing biological and chemical databases are stored in the form of a relational database (RDB). Converting a relational database into the RDF form and storing it in a native RDF database system may not be desirable in many cases. It may be necessary to preserve the original database form, and having two versions of the same data may not be convenient. A solution may be to use a system mapping the relational database to the RDF form. Such a system keeps data in their original relational form and translates incoming SPARQL queries to equivalent SQL queries, which are evaluated by a relational-database system. This review compares different RDB-to-RDF mapping systems with a primary focus on those that can be used free of charge. In addition, it compares different approaches to expressing RDB-to-RDF mappings. The review shows that these systems represent a viable method providing sufficient performance. Their real-life performance is demonstrated on data and queries coming from the neXtProt project.

7.
Sci Rep ; 13(1): 1471, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36702824

RESUMEN

Highly specialized enamel matrix proteins (EMPs) are predominantly expressed in odontogenic tissues and diverged from common ancestral gene. They are crucial for the maturation of enamel and its extreme complexity in multiple independent lineages. However, divergence of EMPs occured already before the true enamel evolved and their conservancy in toothless species suggests that non-canonical functions are still under natural selection. To elucidate this hypothesis, we carried out an unbiased, comprehensive phenotyping and employed data from the International Mouse Phenotyping Consortium to show functional pleiotropy of amelogenin, ameloblastin, amelotin, and enamelin, genes, i.e. in sensory function, skeletal morphology, cardiovascular function, metabolism, immune system screen, behavior, reproduction, and respiratory function. Mice in all KO mutant lines, i.e. amelogenin KO, ameloblastin KO, amelotin KO, and enamelin KO, as well as mice from the lineage with monomeric form of ameloblastin were affected in multiple physiological systems. Evolutionary conserved motifs and functional pleiotropy support the hypothesis of role of EMPs as general physiological regulators. These findings illustrate how their non-canonical function can still effect the fitness of modern species by an example of influence of amelogenin and ameloblastin on the bone physiology.


Asunto(s)
Proteínas del Esmalte Dental , Animales , Ratones , Amelogenina/metabolismo , Proteínas del Esmalte Dental/genética
8.
Comput Struct Biotechnol J ; 20: 6512-6518, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36467577

RESUMEN

Protein tunnels are essential in transporting small molecules into the active sites of enzymes. Tunnels' geometrical and physico-chemical properties influence the transport process. The tunnels are attractive hot spots for protein engineering and drug development. However, studying the ligand binding and unbinding using experimental techniques is challenging, while in silico methods come with their limitations, especially in the case of resource-demanding virtual screening pipelines. Caver Web 1.2 is a new version of the web server combining the capabilities for the detection of protein tunnels with the calculation of the ligand trajectories. The new version of the Caver Web server was expanded with the ability to fetch novel ligands from the Integrated Database of Small Molecules and with the fully automated virtual screening pipeline allowing for the fast evaluation of the predefined set of over 4,300 currently approved drugs. The virtual screening pipeline is accompanied by a comprehensive user interface, making it a viable service for the broader spectrum of companies and the academic user community. The web server is freely available for academic use at https://loschmidt.chemi.muni.cz/caverweb.

9.
J Chem Inf Model ; 62(19): 4783-4798, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36122323

RESUMEN

Computer simulations of biomolecules such as molecular dynamics often suffer from insufficient sampling. Due to limited computational resources, insufficient sampling prevents obtaining proper equilibrium distributions of observed properties. To deal with this problem, we proposed a simulation protocol for efficient resampling of collected off-equilibrium trajectories. These trajectories are utilized for the initial mapping of the conformational space, which is later properly resampled by the introduced Iterative Landmark-Based Umbrella Sampling (ILBUS) method. Reconstruction of static equilibrium properties is achieved by the multistate Bennett acceptance ratio (MBAR) method, which enables efficient use of simulated data. The ILBUS protocol is geometry-based and does not demand any additional collective variable or a dimensional-reduction technique. The only requirement is a set of suitably spaced reference conformations, which serve as landmarks in the mapped conformational space. Additionally, the ILBUS protocol encompasses an iterative process that optimizes the force constant used in the umbrella sampling simulation. Such tuning is an inherent feature of the protocol and does not need to be performed by the user in advance. Furthermore, even the simulations with suboptimal force constants can be used in estimates by MBAR. We demonstrate the feasibility and the performance of this approach in the study of the conformational landscape of the alanine dipeptide, met-enkephalin, and adenylate kinase.


Asunto(s)
Adenilato Quinasa , Simulación de Dinámica Molecular , Alanina , Dipéptidos/química , Encefalina Metionina
10.
Proteins ; 90(12): 2067-2079, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35833233

RESUMEN

Proteins are naturally formed by domains edging their functional and structural properties. A domain out of the context of an entire protein can retain its structure and to some extent also function on its own. These properties rationalize construction of artificial fusion multidomain proteins with unique combination of various functions. Information on the specific functional and structural characteristics of individual domains in the context of new artificial fusion proteins is inevitably encoded in sequential order of composing domains defining their mutual spatial positions. So the challenges in designing new proteins with new domain combinations lie dominantly in structure/function prediction and its context dependency. Despite the enormous body of publications on artificial fusion proteins, the task of their structure/function prediction is complex and nontrivial. The degree of spatial freedom facilitated by a linker between domains and their mutual orientation driven by noncovalent interactions is beyond a simple and straightforward methodology to predict their structure with reasonable accuracy. In the presented manuscript, we tested methodology using available modeling tools and computational methods. We show that the process and methodology of such prediction are not straightforward and must be done with care even when recently introduced AlphaFold II is used. We also addressed a question of benchmarking standards for prediction of multidomain protein structures-x-ray or Nuclear Magnetic Resonance experiments. On the study of six two-domain protein chimeras as well as their composing domains and their x-ray structures selected from PDB, we conclude that the major obstacle for justified prediction is inappropriate sampling of the conformational space by the explored methods. On the other hands, we can still address particular steps of the methodology and improve the process of chimera proteins prediction.


Asunto(s)
Proteínas , Proteínas Recombinantes de Fusión , Dominios Proteicos , Proteínas/química , Rayos X , Proteínas Recombinantes de Fusión/química
11.
Open Biol ; 12(6): 220040, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35728622

RESUMEN

The earliest proteins had to rely on amino acids available on early Earth before the biosynthetic pathways for more complex amino acids evolved. In extant proteins, a significant fraction of the 'late' amino acids (such as Arg, Lys, His, Cys, Trp and Tyr) belong to essential catalytic and structure-stabilizing residues. How (or if) early proteins could sustain an early biosphere has been a major puzzle. Here, we analysed two combinatorial protein libraries representing proxies of the available sequence space at two different evolutionary stages. The first is composed of the entire alphabet of 20 amino acids while the second one consists of only 10 residues (ASDGLIPTEV) representing a consensus view of plausibly available amino acids through prebiotic chemistry. We show that compact conformations resistant to proteolysis are surprisingly similarly abundant in both libraries. In addition, the early alphabet proteins are inherently more soluble and refoldable, independent of the general Hsp70 chaperone activity. By contrast, chaperones significantly increase the otherwise poor solubility of the modern alphabet proteins suggesting their coevolution with the amino acid repertoire. Our work indicates that while both early and modern amino acids are predisposed to supporting protein structure, they do so with different biophysical properties and via different mechanisms.


Asunto(s)
Aminoácidos , Prebióticos , Aminoácidos/química , Pliegue de Proteína , Proteínas/química
12.
Elife ; 112022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35616633

RESUMEN

Contemporary bioinformatic and chemoinformatic capabilities hold promise to reshape knowledge management, analysis and interpretation of data in natural products research. Currently, reliance on a disparate set of non-standardized, insular, and specialized databases presents a series of challenges for data access, both within the discipline and for integration and interoperability between related fields. The fundamental elements of exchange are referenced structure-organism pairs that establish relationships between distinct molecular structures and the living organisms from which they were identified. Consolidating and sharing such information via an open platform has strong transformative potential for natural products research and beyond. This is the ultimate goal of the newly established LOTUS initiative, which has now completed the first steps toward the harmonization, curation, validation and open dissemination of 750,000+ referenced structure-organism pairs. LOTUS data is hosted on Wikidata and regularly mirrored on https://lotus.naturalproducts.net. Data sharing within the Wikidata framework broadens data access and interoperability, opening new possibilities for community curation and evolving publication models. Furthermore, embedding LOTUS data into the vast Wikidata knowledge graph will facilitate new biological and chemical insights. The LOTUS initiative represents an important advancement in the design and deployment of a comprehensive and collaborative natural products knowledge base.


Asunto(s)
Productos Biológicos , Gestión del Conocimiento , Biología Computacional , Bases de Datos Factuales , Conocimiento
13.
Biochemistry ; 61(6): 413-423, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35225608

RESUMEN

Melastatin transient receptor potential (TRPM) channels belong to one of the most significant subgroups of the transient receptor potential (TRP) channel family. Here, we studied the TRPM5 member, the receptor exposed to calcium-mediated activation, resulting in taste transduction. It is known that most TRP channels are highly modulated through interactions with extracellular and intracellular agents. The binding sites for these ligands are usually located at the intracellular N- and C-termini of the TRP channels, and they can demonstrate the character of an intrinsically disordered protein (IDP), which allows such a region to bind various types of molecules. We explored the N-termini of TRPM5 and found the intracellular regions for calcium-binding proteins (CBPs) the calmodulin (CaM) and calcium-binding protein S1 (S100A1) by in vitro binding assays. Furthermore, molecular docking and molecular dynamics simulations (MDs) of the discovered complexes confirmed their known common binding interface patterns and the uniqueness of the basic residues present in the TRPM binding regions for CaM/S100A1.


Asunto(s)
Calmodulina , Canales Catiónicos TRPM , Sitios de Unión , Calcio/metabolismo , Calmodulina/química , Simulación del Acoplamiento Molecular , Proteínas S100/metabolismo , Canales Catiónicos TRPM/química , Canales Catiónicos TRPM/metabolismo
14.
Heliyon ; 7(12): e08490, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34917797

RESUMEN

Transient receptor potential melastatin 7 (TRPM7) represents melastatin TRP channel with two significant functions, cation permeability and kinase activity. TRPM7 is widely expressed among tissues and is therefore involved in a variety of cellular functions representing mainly Mg2+ homeostasis, cellular Ca2+ flickering, and the regulation of DNA transcription by a cleaved kinase domain translocated to the nucleus. TRPM7 participates in several important biological processes in the nervous and cardiovascular systems. Together with the necessary function of the TRPM7 in these tissues and its recently analyzed overall structure, this channel requires further studies leading to the development of potential therapeutic targets. Here we present the first study investigating the N-termini of TRPM7 with binding regions for important intracellular modulators calmodulin (CaM) and calcium-binding protein S1 (S100A1) using in vitro and in silico approaches. Molecular simulations of the discovered complexes reveal their potential binding interfaces with common interaction patterns and the important role of basic residues present in the N-terminal binding region of TRPM.

15.
Protein Sci ; 30(8): 1653-1666, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33969912

RESUMEN

Most of the structural proteins known today are composed of domains that carry their own functions while keeping their structural properties. It is supposed that such domains, when taken out of the context of the whole protein, can retain their original structure and function to a certain extent. Information on the specific functional and structural characteristics of individual domains in a new context of artificial fusion proteins may help to reveal the rules of internal and external domain communication. Moreover, this could also help explain the mechanism of such communication and address how the mutual allosteric effect plays a role in a such multi-domain protein system. The simple model system of the two-domain fusion protein investigated in this work consisted of a well-folded PDZ3 domain and an artificially designed small protein domain called Tryptophan Cage (TrpCage). Two fusion proteins with swapped domain order were designed to study their structural and functional features as well as their biophysical properties. The proteins composed of PDZ3 and TrpCage, both identical in amino acid sequence but different in composition (PDZ3-TrpCage, TrpCage-PDZ3), were studied using circualr dichroism (CD) spectrometry, analytical ultracentrifugation, and molecular dynamic simulations. The biophysical analysis uncovered different structural and denaturation properties of both studied proteins, revealing their different unfolding pathways and dynamics.


Asunto(s)
Dominios PDZ , Proteínas Recombinantes de Fusión , Triptófano , Secuencia de Aminoácidos , Simulación de Dinámica Molecular , Dominios PDZ/genética , Dominios PDZ/fisiología , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Triptófano/química , Triptófano/genética
16.
J Cheminform ; 13(1): 38, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980298

RESUMEN

The Resource Description Framework (RDF), together with well-defined ontologies, significantly increases data interoperability and usability. The SPARQL query language was introduced to retrieve requested RDF data and to explore links between them. Among other useful features, SPARQL supports federated queries that combine multiple independent data source endpoints. This allows users to obtain insights that are not possible using only a single data source. Owing to all of these useful features, many biological and chemical databases present their data in RDF, and support SPARQL querying. In our project, we primary focused on PubChem, ChEMBL and ChEBI small-molecule datasets. These datasets are already being exported to RDF by their creators. However, none of them has an official and currently supported SPARQL endpoint. This omission makes it difficult to construct complex or federated queries that could access all of the datasets, thus underutilising the main advantage of the availability of RDF data. Our goal is to address this gap by integrating the datasets into one database called the Integrated Database of Small Molecules (IDSM) that will be accessible through a SPARQL endpoint. Beyond that, we will also focus on increasing mutual interoperability of the datasets. To realise the endpoint, we decided to implement an in-house developed SPARQL engine based on the PostgreSQL relational database for data storage. In our approach, data are stored in the traditional relational form, and the SPARQL engine translates incoming SPARQL queries into equivalent SQL queries. An important feature of the engine is that it optimises the resulting SQL queries. Together with optimisations performed by PostgreSQL, this allows efficient evaluations of SPARQL queries. The endpoint provides not only querying in the dataset, but also the compound substructure and similarity search supported by our Sachem project. Although the endpoint is accessible from an internet browser, it is mainly intended to be used for programmatic access by other services, for example as a part of federated queries. For regular users, we offer a rich web application called ChemWebRDF using the endpoint. The application is publicly available at https://idsm.elixir-czech.cz/chemweb/ .

17.
Nucleic Acids Res ; 49(W1): W15-W20, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34019656

RESUMEN

Interactions among amino acid residues are the principal contributor to the stability of the three-dimensional structure of a protein. The Amino Acid Interactions (INTAA) web server (https://bioinfo.uochb.cas.cz/INTAA/) has established itself as a unique computational resource, which enables users to calculate the contribution of individual residues in a biomolecular structure to its total energy using a molecular mechanical scoring function. In this update, we describe major additions to the web server which help solidify its position as a robust, comprehensive resource for biomolecular structure analysis. Importantly, a new continuum solvation model was introduced, allowing more accurate representation of electrostatic interactions in aqueous media. In addition, a low-overhead pipeline for the estimation of evolutionary conservation in protein chains has been added. New visualization options were introduced as well, allowing users to easily switch between and interrelate the energetic and evolutionary views of the investigated structures.


Asunto(s)
Aminoácidos/química , Conformación Proteica , Proteínas/química , Programas Informáticos , Internet , Modelos Moleculares , Electricidad Estática
18.
Protein Sci ; 30(5): 1022-1034, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33739538

RESUMEN

The wide variety of protein structures and functions results from the diverse properties of the 20 canonical amino acids. The generally accepted hypothesis is that early protein evolution was associated with enrichment of a primordial alphabet, thereby enabling increased protein catalytic efficiencies and functional diversification. Aromatic amino acids were likely among the last additions to genetic code. The main objective of this study was to test whether enzyme catalysis can occur without the aromatic residues (aromatics) by studying the structure and function of dephospho-CoA kinase (DPCK) following aromatic residue depletion. We designed two variants of a putative DPCK from Aquifex aeolicus by substituting (a) Tyr, Phe and Trp or (b) all aromatics (including His). Their structural characterization indicates that substituting the aromatics does not markedly alter their secondary structures but does significantly loosen their side chain packing and increase their sizes. Both variants still possess ATPase activity, although with 150-300 times lower efficiency in comparison with the wild-type phosphotransferase activity. The transfer of the phosphate group to the dephospho-CoA substrate becomes heavily uncoupled and only the His-containing variant is still able to perform the phosphotransferase reaction. These data support the hypothesis that proteins in the early stages of life could support catalytic activities, albeit with low efficiencies. An observed significant contraction upon ligand binding is likely important for appropriate organization of the active site. Formation of firm hydrophobic cores, which enable the assembly of stably structured active sites, is suggested to provide a selective advantage for adding the aromatic residues.


Asunto(s)
Proteínas Bacterianas/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Sustitución de Aminoácidos , Aquifex/enzimología , Aquifex/genética , Proteínas Bacterianas/genética , Catálisis , Dominio Catalítico , Mutagénesis Sitio-Dirigida , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Estructura Secundaria de Proteína
19.
Int J Biol Macromol ; 168: 1-12, 2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33290768

RESUMEN

Constantly increasing attention to bioengineered proteins has led to the rapid development of new functional targets. Here we present the biophysical and functional characteristics of the newly designed CaM/AMBN-Ct fusion protein. The two-domain artificial target consists of calmodulin (CaM) and ameloblastin C-terminus (AMBN-Ct). CaM as a well-characterized calcium ions (Ca2+) binding protein offers plenty of options in terms of Ca2+ detection in biomedicine and biotechnologies. Highly negatively charged AMBN-Ct belongs to intrinsically disordered proteins (IDPs). CaM/AMBN-Ct was designed to open new ways of communication synergies between the domains with potential functional improvement. The character and function of CaM/AMBN-Ct were explored by biophysical and molecular modelling methods. Experimental studies have revealed increased stability and preserved CaM/AMBN-Ct function. The results of molecular dynamic simulations (MDs) outlined different interface patterns between the domains with potential allosteric communication within the fusion.


Asunto(s)
Calmodulina/química , Proteínas del Esmalte Dental/química , Secuencia de Aminoácidos/genética , Sitios de Unión/fisiología , Calcio/química , Proteínas del Esmalte Dental/metabolismo , Humanos , Proteínas Intrínsecamente Desordenadas/química , Modelos Moleculares , Unión Proteica/fisiología
20.
Int J Mol Sci ; 21(23)2020 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-33291486

RESUMEN

Ameloblastin (Ambn) as an intrinsically disordered protein (IDP) stands for an important role in the formation of enamel-the hardest biomineralized tissue commonly formed in vertebrates. The human ameloblastin (AMBN) is expressed in two isoforms: full-length isoform I (AMBN ISO I) and isoform II (AMBN ISO II), which is about 15 amino acid residues shorter than AMBN ISO I. The significant feature of AMBN-its oligomerization ability-is enabled due to a specific sequence encoded by exon 5 present at the N-terminal part in both known isoforms. In this study, we characterized AMBN ISO I and AMBN ISO II by biochemical and biophysical methods to determine their common features and differences. We confirmed that both AMBN ISO I and AMBN ISO II form oligomers in in vitro conditions. Due to an important role of AMBN in biomineralization, we further addressed the calcium (Ca2+)-binding properties of AMBN ISO I and ISO II. The binding properties of AMBN to Ca2+ may explain the role of AMBN in biomineralization and more generally in Ca2+ homeostasis processes.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Proteínas del Esmalte Dental/metabolismo , Proteínas de Unión al Calcio/química , Proteínas del Esmalte Dental/química , Humanos , Hidrodinámica , Proteínas Intrínsecamente Desordenadas/metabolismo , Modelos Biológicos , Unión Proteica , Isoformas de Proteínas , Multimerización de Proteína , Análisis Espectral , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...