Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mSystems ; 6(6): e0104221, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34874776

RESUMEN

Cyanobacterial mats profoundly influenced Earth's biological and geochemical evolution and still play important ecological roles in the modern world. However, the biogeochemical functioning of cyanobacterial mats under persistent low-O2 conditions, which dominated their evolutionary history, is not well understood. To investigate how different metabolic and biogeochemical functions are partitioned among community members, we conducted metagenomics and metatranscriptomics on cyanobacterial mats in the low-O2, sulfidic Middle Island sinkhole (MIS) in Lake Huron. Metagenomic assembly and binning yielded 144 draft metagenome assembled genomes, including 61 of medium quality or better, and the dominant cyanobacteria and numerous Proteobacteria involved in sulfur cycling. Strains of a Phormidium autumnale-like cyanobacterium dominated the metagenome and metatranscriptome. Transcripts for the photosynthetic reaction core genes psaA and psbA were abundant in both day and night. Multiple types of psbA genes were expressed from each cyanobacterium, and the dominant psbA transcripts were from an atypical microaerobic type of D1 protein from Phormidium. Further, cyanobacterial transcripts for photosystem I genes were more abundant than those for photosystem II, and two types of Phormidium sulfide quinone reductase were recovered, consistent with anoxygenic photosynthesis via photosystem I in the presence of sulfide. Transcripts indicate active sulfur oxidation and reduction within the cyanobacterial mat, predominately by Gammaproteobacteria and Deltaproteobacteria, respectively. Overall, these genomic and transcriptomic results link specific microbial groups to metabolic processes that underpin primary production and biogeochemical cycling in a low-O2 cyanobacterial mat and suggest mechanisms for tightly coupled cycling of oxygen and sulfur compounds in the mat ecosystem. IMPORTANCE Cyanobacterial mats are dense communities of microorganisms that contain photosynthetic cyanobacteria along with a host of other bacterial species that play important yet still poorly understood roles in this ecosystem. Although such cyanobacterial mats were critical agents of Earth's biological and chemical evolution through geological time, little is known about how they function under the low-oxygen conditions that characterized most of their natural history. Here, we performed sequencing of the DNA and RNA of modern cyanobacterial mat communities under low-oxygen and sulfur-rich conditions from the Middle Island sinkhole in Lake Huron. The results reveal the organisms and metabolic pathways that are responsible for both oxygen-producing and non-oxygen-producing photosynthesis as well as interconversions of sulfur that likely shape how much O2 is produced in such ecosystems. These findings indicate tight metabolic reactions between community members that help to explain the limited the amount of O2 produced in cyanobacterial mat ecosystems.

2.
Sci Rep ; 9(1): 9911, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31289321

RESUMEN

Over the course of a mission to the International Space Station (ISS) crew members are exposed to a number of stressors that can potentially alter the composition of their microbiomes and may have a negative impact on astronauts' health. Here we investigated the impact of long-term space exploration on the microbiome of nine astronauts that spent six to twelve months in the ISS. We present evidence showing that the microbial communities of the gastrointestinal tract, skin, nose and tongue change during the space mission. The composition of the intestinal microbiota became more similar across astronauts in space, mostly due to a drop in the abundance of a few bacterial taxa, some of which were also correlated with changes in the cytokine profile of crewmembers. Alterations in the skin microbiome that might contribute to the high frequency of skin rashes/hypersensitivity episodes experienced by astronauts in space were also observed. The results from this study demonstrate that the composition of the astronauts' microbiome is altered during space travel. The impact of those changes on crew health warrants further investigation before humans embark on long-duration voyages into outer space.


Asunto(s)
Astronautas , Bacterias/clasificación , Bacterias/aislamiento & purificación , Citocinas/sangre , ADN Bacteriano/análisis , Microbiota , Saliva/microbiología , Bacterias/genética , Monitoreo del Ambiente , Humanos , Estudios Longitudinales , Vuelo Espacial/instrumentación , Factores de Tiempo
3.
mSphere ; 2(5)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28989973

RESUMEN

Genetic engineering of cytomegalovirus (CMV) currently relies on generating a bacterial artificial chromosome (BAC) by introducing a bacterial origin of replication into the viral genome using in vivo recombination in virally infected tissue culture cells. However, this process is inefficient, results in adaptive mutations, and involves deletion of viral genes to avoid oversized genomes when inserting the BAC cassette. Moreover, BAC technology does not permit the simultaneous manipulation of multiple genome loci and cannot be used to construct synthetic genomes. To overcome these limitations, we adapted synthetic biology tools to clone CMV genomes in Saccharomyces cerevisiae. Using an early passage of the human CMV isolate Toledo, we first applied transformation-associated recombination (TAR) to clone 16 overlapping fragments covering the entire Toledo genome in Saccharomyces cerevisiae. Then, we assembled these fragments by TAR in a stepwise process until the entire genome was reconstituted in yeast. Since next-generation sequence analysis revealed that the low-passage-number isolate represented a mixture of parental and fibroblast-adapted genomes, we selectively modified individual DNA fragments of fibroblast-adapted Toledo (Toledo-F) and again used TAR assembly to recreate parental Toledo (Toledo-P). Linear, full-length HCMV genomes were transfected into human fibroblasts to recover virus. Unlike Toledo-F, Toledo-P displayed characteristics of primary isolates, including broad cellular tropism in vitro and the ability to establish latency and reactivation in humanized mice. Our novel strategy thus enables de novo cloning of CMV genomes, more-efficient genome-wide engineering, and the generation of viral genomes that are partially or completely derived from synthetic DNA. IMPORTANCE The genomes of large DNA viruses, such as human cytomegalovirus (HCMV), are difficult to manipulate using current genetic tools, and at this time, it is not possible to obtain, molecular clones of CMV without extensive tissue culture. To overcome these limitations, we used synthetic biology tools to capture genomic fragments from viral DNA and assemble full-length genomes in yeast. Using an early passage of the HCMV isolate Toledo containing a mixture of wild-type and tissue culture-adapted virus. we directly cloned the majority sequence and recreated the minority sequence by simultaneous modification of multiple genomic regions. Thus, our novel approach provides a paradigm to not only efficiently engineer HCMV and other large DNA viruses on a genome-wide scale but also facilitates the cloning and genetic manipulation of primary isolates and provides a pathway to generating entirely synthetic genomes.

4.
Proc Natl Acad Sci U S A ; 114(42): E8885-E8894, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-28928148

RESUMEN

Here, we present a transformational approach to genome engineering of herpes simplex virus type 1 (HSV-1), which has a large DNA genome, using synthetic genomics tools. We believe this method will enable more rapid and complex modifications of HSV-1 and other large DNA viruses than previous technologies, facilitating many useful applications. Yeast transformation-associated recombination was used to clone 11 fragments comprising the HSV-1 strain KOS 152 kb genome. Using overlapping sequences between the adjacent pieces, we assembled the fragments into a complete virus genome in yeast, transferred it into an Escherichia coli host, and reconstituted infectious virus following transfection into mammalian cells. The virus derived from this yeast-assembled genome, KOSYA, replicated with kinetics similar to wild-type virus. We demonstrated the utility of this modular assembly technology by making numerous modifications to a single gene, making changes to two genes at the same time and, finally, generating individual and combinatorial deletions to a set of five conserved genes that encode virion structural proteins. While the ability to perform genome-wide editing through assembly methods in large DNA virus genomes raises dual-use concerns, we believe the incremental risks are outweighed by potential benefits. These include enhanced functional studies, generation of oncolytic virus vectors, development of delivery platforms of genes for vaccines or therapy, as well as more rapid development of countermeasures against potential biothreats.


Asunto(s)
Genómica/métodos , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/patogenicidad , Animales , Proteínas Bacterianas/genética , Chlorocebus aethiops , Cromosomas Artificiales Bacterianos , Escherichia coli/genética , Genoma Viral , Proteínas Luminiscentes/genética , Proteínas Recombinantes de Fusión/genética , Recombinación Genética , Saccharomyces cerevisiae/genética , Células Vero , Ensamble de Virus/genética
5.
PLoS One ; 12(6): e0178717, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28636653

RESUMEN

Ebola virus and Marburg virus are members of the Filovirdae family and causative agents of hemorrhagic fever with high fatality rates in humans. Filovirus virulence is partially attributed to the VP35 protein, a well-characterized inhibitor of the RIG-I-like receptor pathway that triggers the antiviral interferon (IFN) response. Prior work demonstrates the ability of VP35 to block potent RIG-I activators, such as Sendai virus (SeV), and this IFN-antagonist activity is directly correlated with its ability to bind RNA. Several structural studies demonstrate that VP35 binds short synthetic dsRNAs; yet, there are no data that identify viral immunostimulatory RNAs (isRNA) or host RNAs bound to VP35 in cells. Utilizing a SeV infection model, we demonstrate that both viral isRNA and host RNAs are bound to Ebola and Marburg VP35s in cells. By deep sequencing the purified VP35-bound RNA, we identified the SeV copy-back defective interfering (DI) RNA, previously identified as a robust RIG-I activator, as the isRNA bound by multiple filovirus VP35 proteins, including the VP35 protein from the West African outbreak strain (Makona EBOV). Moreover, RNAs isolated from a VP35 RNA-binding mutant were not immunostimulatory and did not include the SeV DI RNA. Strikingly, an analysis of host RNAs bound by wild-type, but not mutant, VP35 revealed that select host RNAs are preferentially bound by VP35 in cell culture. Taken together, these data support a model in which VP35 sequesters isRNA in virus-infected cells to avert RIG-I like receptor (RLR) activation.


Asunto(s)
Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Interacciones Huésped-Patógeno/inmunología , ARN Bicatenario/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Fiebre Hemorrágica Ebola/genética , Fiebre Hemorrágica Ebola/virología , Humanos , Interferones/antagonistas & inhibidores , Virus Sendai/genética , Virus Sendai/inmunología , Transducción de Señal , Proteínas Reguladoras y Accesorias Virales/inmunología
6.
Environ Microbiol ; 18(2): 358-71, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25627339

RESUMEN

Metagenomic and metatranscriptomic sequencing was conducted on cyanobacterial mats of the Middle Island Sinkhole (MIS), Lake Huron. Metagenomic data from 14 samples collected over 5 years were used to reconstruct genomes of two genotypes of a novel virus, designated PhV1 type A and PhV1 type B. Both viral genotypes encode and express nblA, a gene involved in degrading phycobilisomes, which are complexes of pigmented proteins that harvest light for photosynthesis. Phylogenetic analysis indicated that the viral-encoded nblA is derived from the host cyanobacterium, Phormidium MIS-PhA. The cyanobacterial host also has two complete CRISPR (clustered regularly interspaced short palindromic repeats) systems that serve as defence mechanisms for bacteria and archaea against viruses and plasmids. One 45 bp CRISPR spacer from Phormidium had 100% nucleotide identity to PhV1 type B, but this region was absent from PhV1 type A. Transcripts from PhV1 and the Phormidium CRISPR loci were detected in all six metatranscriptomic data sets (three during the day and three at night), indicating that both are transcriptionally active in the environment. These results reveal ecological and genetic interactions between viruses and cyanobacteria at MIS, highlighting the value of parallel analysis of viruses and hosts in understanding ecological interactions in natural communities.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Cianobacterias/genética , Metagenómica , Ficobilisomas/metabolismo , Virus/genética , Archaea/genética , Secuencia de Bases , Ecología , Genoma Bacteriano/genética , Genoma Viral/genética , Lagos/microbiología , Oxígeno/metabolismo , Filogenia , Plásmidos , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...