Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Lipid Res ; 54(3): 636-648, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23277511

RESUMEN

Group IVA cytosolic phospholipase A2 (cPLA2α), which harbors an N-terminal lipid binding C2 domain and a C-terminal lipase domain, produces arachidonic acid from the sn-2 position of zwitterionic lipids such as phosphatidylcholine. The C2 domain has been shown to bind zwitterionic lipids, but more recently, the anionic phosphomonoester sphingolipid metabolite ceramide-1-phosphate (C1P) has emerged as a potent bioactive lipid with high affinity for a cationic patch in the C2 domain ß-groove. To systematically analyze the role that C1P plays in promoting the binding of cPLA2α-C2 to biological membranes, we employed biophysical measurements and cellular translocation studies along with mutagenesis. Biophysical and cellular translocation studies demonstrate that C1P specificity is mediated by Arg59, Arg6¹, and His6² (an RxRH sequence) in the C2 domain. Computational studies using molecular dynamics simulations confirm the origin of C1P specificity, which results in a spatial shift of the C2 domain upon membrane docking to coordinate the small C1P headgroup. Additionally, the hydroxyl group on the sphingosine backbone plays an important role in the interaction with the C2 domain, further demonstrating the selectivity of the C2 domain for C1P over phosphatidic acid. Taken together, this is the first study demonstrating the molecular origin of C1P recognition.


Asunto(s)
Ceramidas/metabolismo , Fosfolipasas A2 Grupo IV/química , Fosfolipasas A2 Grupo IV/metabolismo , Calcio/metabolismo , Eicosanoides/metabolismo , Simulación de Dinámica Molecular , Unión Proteica
2.
J Biol Chem ; 285(16): 12308-20, 2010 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-20080965

RESUMEN

Polarity proteins promote the asymmetric organization of cells by orienting intracellular sorting mechanisms, such as protein trafficking and cytoskeletal assembly. The localization of individual polarity proteins in turn is often determined by association with factors that mediate contact with other cells or the substratum. This arrangement for the Par and Crb apical polarity complexes at the tight junction is disrupted by the adaptor protein Amot. Amot directly binds the scaffolding proteins Patj and Mupp1 and redistributes them and their binding partners from the plasma membrane to endosomes. However, the mechanism by which Amot is targeted to endosomes is unknown. Here, a novel lipid binding domain within Amot is shown to selectively bind with high affinity to membranes containing monophosphorylated phosphatidylinositols and cholesterol. With similar lipid specificity, Amot inserts into and tubulates membranes in vitro and enlarges perinuclear endosomal compartments in cells. Based on the similar distribution of Amot with cholesterol, Rab11, and Arf6, such membrane interactions are identified at juxtanuclear endocytic recycling compartments. Taken together, these findings indicate that Amot is targeted along with associated apical polarity proteins to the endocytic recycling compartment via this novel membrane binding domain.


Asunto(s)
Endosomas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/química , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/metabolismo , Angiomotinas , Animales , Sitios de Unión , Fenómenos Biofísicos , Compartimento Celular , Línea Celular , Polaridad Celular/fisiología , Colesterol/metabolismo , Perros , Endocitosis/fisiología , Humanos , Técnicas In Vitro , Péptidos y Proteínas de Señalización Intercelular/genética , Membranas Intracelulares/metabolismo , Liposomas , Lípidos de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de Microfilamentos , Filogenia , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Unión al GTP rab/metabolismo
3.
Proteins ; 76(4): 852-60, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19296456

RESUMEN

The FYVE domain associates with phosphatidylinositol 3-phosphate [PtdIns(3)P] in membranes of early endosomes and penetrates bilayers. Here, we detail principles of membrane anchoring and show that the FYVE domain insertion into PtdIns(3)P-enriched membranes and membrane-mimetics is substantially increased in acidic conditions. The EEA1 FYVE domain binds to POPC/POPE/PtdIns(3)P vesicles with a Kd of 49 nM at pH 6.0, however associates approximately 24 fold weaker at pH 8.0. The decrease in the affinity is primarily due to much faster dissociation of the protein from the bilayers in basic media. Lowering the pH enhances the interaction of the Hrs, RUFY1, Vps27p and WDFY1 FYVE domains with PtdIns(3)P-containing membranes in vitro and in vivo, indicating that pH-dependency is a general function of the FYVE finger family. The PtdIns(3)P binding and membrane insertion of the FYVE domain is modulated by the two adjacent His residues of the R(R/K)HHCRXCG signature motif. Mutation of either His residue abolishes the pH-sensitivity. Both protonation of the His residues and nonspecific electrostatic contacts stabilize the FYVE domain in the lipid-bound form, promoting its penetration and increasing the membrane residence time.


Asunto(s)
Lípidos de la Membrana/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Sitios de Unión , Histidina/química , Histidina/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Modelos Moleculares , Mutación , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Unión Proteica , Proteínas de Transporte Vesicular/genética
4.
J Biol Chem ; 283(38): 26047-58, 2008 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-18621733

RESUMEN

Many cytosolic proteins are recruited to the plasma membrane (PM) during cell signaling and other cellular processes. Recent reports have indicated that phosphatidylserine (PS), phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)), and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) that are present in the PM play important roles for their specific PM recruitment. To systematically analyze how these lipids mediate PM targeting of cellular proteins, we performed biophysical, computational, and cell studies of the Ca(2+)-dependent C2 domain of protein kinase Calpha (PKCalpha) that is known to bind PS and phosphoinositides. In vitro membrane binding measurements by surface plasmon resonance analysis show that PKCalpha-C2 nonspecifically binds phosphoinositides, including PtdIns(4,5)P(2) and PtdIns(3,4,5)P(3), but that PS and Ca(2+) binding is prerequisite for productive phosphoinositide binding. PtdIns(4,5)P(2) or PtdIns(3,4,5)P(3) augments the Ca(2+)- and PS-dependent membrane binding of PKCalpha-C2 by slowing its membrane dissociation. Molecular dynamics simulations also support that Ca(2+)-dependent PS binding is essential for membrane interactions of PKCalpha-C2. PtdIns(4,5)P(2) alone cannot drive the membrane attachment of the domain but further stabilizes the Ca(2+)- and PS-dependent membrane binding. When the fluorescence protein-tagged PKCalpha-C2 was expressed in NIH-3T3 cells, mutations of phosphoinositide-binding residues or depletion of PtdIns(4,5)P(2) and/or PtdIns(3,4,5)P(3) from PM did not significantly affect the PM association of the domain but accelerated its dissociation from PM. Also, local synthesis of PtdIns(4,5)P(2) or PtdIns(3,4,5)P(3) at the PM slowed membrane dissociation of PKCalpha-C2. Collectively, these studies show that PtdIns(4,5)P(2) and PtdIns(3,4,5)P(3) augment the Ca(2+)- and PS-dependent membrane binding of PKCalpha-C2 by elongating the membrane residence of the domain but cannot drive the PM recruitment of PKCalpha-C2. These studies also suggest that effective PM recruitment of many cellular proteins may require synergistic actions of PS and phosphoinositides.


Asunto(s)
Membrana Celular/metabolismo , Regulación Enzimológica de la Expresión Génica , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilserinas/química , Animales , Biofisica/métodos , Movimiento Celular , Ratones , Mutación , Células 3T3 NIH , Unión Proteica , Proteína Quinasa C-alfa/química , Proteína Quinasa C-alfa/metabolismo , Estructura Terciaria de Proteína , Transporte de Proteínas
5.
J Lipid Res ; 49(8): 1807-15, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18469301

RESUMEN

The general receptor for phosphoinositides isoform 1 (GRP1) is recruited to the plasma membrane in response to activation of phosphoinositide 3-kinases and accumulation of phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)]. GRP1's pleckstrin homology (PH) domain recognizes PtdIns(3,4,5)P(3) with high specificity and affinity, however, the precise mechanism of its association with membranes remains unclear. Here, we detail the molecular basis of membrane anchoring by the GRP1 PH domain. Our data reveal a multivalent membrane docking involving PtdIns(3,4,5)P(3) binding, regulated by pH and facilitated by electrostatic interactions with other anionic lipids. The specific recognition of PtdIns(3,4,5)P(3) triggers insertion of the GRP1 PH domain into membranes. An acidic environment enhances PtdIns(3,4,5)P(3) binding and increases membrane penetration as demonstrated by NMR and monolayer surface tension and surface plasmon resonance experiments. The GRP1 PH domain displays a 28 nM affinity for POPC/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine/PtdIns(3,4,5)P(3) vesicles at pH 6.0, but binds 22-fold weaker at pH 8.0. The pH sensitivity is attributed in part to the His355 residue, protonation of which is required for the robust interaction with PtdIns(3,4,5)P(3) and significant membrane penetration, as illustrated by mutagenesis data. The binding affinity of the GRP1 PH domain for PtdIns(3,4,5)P(3)-containing vesicles is further amplified (by approximately 6-fold) by nonspecific electrostatic interactions with phosphatidylserine/phosphatidylinositol. Together, our results provide new insight into the multivalent mechanism of the membrane targeting and regulation of the GRP1 PH domain.


Asunto(s)
Receptores Citoplasmáticos y Nucleares/fisiología , Secuencia de Aminoácidos , Sitios de Unión , Histidina/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Membrana Dobles de Lípidos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositoles/metabolismo , Fosfatidilserinas/metabolismo , Estructura Terciaria de Proteína
6.
J Mol Biol ; 373(2): 412-23, 2007 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-17825837

RESUMEN

Epsin and AP180 are essential components of the endocytotic machinery, which controls internalization of protein receptors and other macromolecules at the cell surface. Epsin and AP180 are recruited to the plasma membrane by their structurally and functionally related N-terminal ENTH and ANTH domains that specifically recognize PtdIns(4,5)P2. Here, we show that membrane anchoring of the ENTH and ANTH domains is regulated by the acidic environment. Lowering the pH enhances PtdIns(4,5)P2 affinity of the ENTH and ANTH domains reinforcing their association with lipid vesicles and monolayers. The pH dependency is due to the conserved histidine residues of the ENTH and ANTH domains, protonation of which is necessary for the strong PtdIns(4,5)P2 recognition, as revealed by liposome binding, surface plasmon resonance, NMR, monolayer surface tension and mutagenesis experiments. The pH sensitivity of the ENTH and ANTH domains is reminiscent to the pH dependency of the FYVE domain suggesting a common regulatory mechanism of membrane anchoring by a subset of the PI-binding domains.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/química , Membrana Dobles de Lípidos/química , Proteínas de Ensamble de Clatrina Monoméricas/química , Fosfatidilinositol 4,5-Difosfato/química , Proteínas Adaptadoras del Transporte Vesicular/análisis , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células COS , Chlorocebus aethiops , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Histidina/química , Histidina/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Membrana Dobles de Lípidos/metabolismo , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas de Ensamble de Clatrina Monoméricas/análisis , Proteínas de Ensamble de Clatrina Monoméricas/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Estructura Terciaria de Proteína , Ratas , Alineación de Secuencia
7.
J Lipid Res ; 48(12): 2701-8, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17890681

RESUMEN

Previously, ceramide-1-phosphate (C1P) and phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] were demonstrated to be potent and specific activators of group IVA cytosolic phospholipase A2 (cPLA2alpha). In this study, we hypothesized that these anionic lipids functionally activated the enzyme by distinctly different mechanisms. Indeed, surface plasmon resonance and surface dilution kinetics demonstrated that C1P was a more potent effector than PI(4,5)P2 in decreasing the dissociation constant of the cPLA2alpha-phosphatidylcholine (PC) interaction and increasing the residence time of the enzyme on the vesicles/micelles. PI(4,5)P2, in contrast to C1P, decreased the Michaelis-Menten constant, increasing the catalytic efficiency of the enzyme. Furthermore, PI(4,5)P2 activated cPLA2alpha with a stoichiometry of 1:1 versus C1P at 2.4:1. Lastly, PI(4,5)P2, but not C1P, increased the penetration ability of cPLA2alpha into PC-rich membranes. Therefore, this study demonstrates two distinct mechanisms for the activation of cPLA2alpha by anionic lipids. First, C1P activates cPLA2alpha by increasing the residence time of the enzyme on membranes. Second, PI(4,5)P2 activates the enzyme by increasing catalytic efficiency through increased membrane penetration.


Asunto(s)
Ceramidas/química , Fosfolipasas A2 Grupo IV/metabolismo , Fosfatidilinositol 4,5-Difosfato/química , Activación Enzimática , Humanos , Hidrólisis , Cinética , Proteínas Recombinantes/metabolismo , Resonancia por Plasmón de Superficie
8.
J Biol Chem ; 282(28): 20467-74, 2007 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-17472963

RESUMEN

Previously, ceramide-1-phosphate (C1P) was demonstrated to be a potent and specific activator of group IV cytosolic phospholipase A(2)alpha (cPLA(2)alpha) via interaction with the C2 domain. In this study, we hypothesized that the specific interaction site for C1P was localized to the cationic beta-groove (Arg(57), Lys(58), Arg(59)) of the C2 domain of cPLA(2)alpha. In this regard, mutants of this region of cPLA(2)alpha were generated (R57A/K58A/R59A, R57A/R59A, K58A/R59A, R57A/K58A, R57A, K58A, and R59A) and examined for C1P affinity by surface plasmon resonance. The triple mutants (R57A/K58A/R59A), the double mutants (R57A/R59A, K58A/R59A, and R57A/K58A), and the single mutant (R59A) demonstrated significantly reduced affinity for C1P-containing vesicles as compared with wild-type cPLA(2)alpha. Examining these mutants for enzymatic activity demonstrated that these five mutants of cPLA(2)alpha also showed a significant reduction in the ability of C1P to: 1) increase the V(max) of the reaction; and 2) significantly decrease the dissociation constant (K (A)(s)) of the reaction as compared with the wild-type enzyme. The mutational effect was specific for C1P as all of the cationic mutants of cPLA(2)alpha demonstrated normal basal activity as well as normal affinities for phosphatidylcholine and phosphatidylinositol-4,5-bisphosphate as compared with wild-type cPLA(2)alpha. This study, for the first time, demonstrates a novel C1P interaction site mapped to the cationic beta-groove of the C2 domain of cPLA(2)alpha.


Asunto(s)
Ceramidas/química , Fosfolipasas A/química , Sustitución de Aminoácidos , Animales , Sitios de Unión/genética , Ceramidas/metabolismo , Fosfolipasas A2 Grupo IV , Humanos , Cinética , Mutación Missense , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipasas A/genética , Fosfolipasas A/metabolismo , Fosfolipasas A2 , Unión Proteica/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína/genética , Especificidad por Sustrato/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...