Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 15(22)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38001575

RESUMEN

The metastasis of tumor cells into vital organs is a major cause of death from diverse types of malignancies [...].

2.
Mol Ther Nucleic Acids ; 33: 511-528, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37602275

RESUMEN

Extracellular vesicles (EVs) have been implicated in the regulation of myogenic differentiation. C2C12 murine myoblast differentiation was reduced following treatment with GW4869 or heparin (to inhibit exosome biogenesis and EV uptake, respectively). Conversely, treatment with C2C12 myotube-conditioned medium enhanced myogenic differentiation. Ultrafiltration-size exclusion liquid chromatography (UF-SEC) was used to isolate EVs and non-EV extracellular protein in parallel from C2C12 myoblast- and myotube-conditioned medium. UF-SEC-purified EVs promoted myogenic differentiation at low doses (≤2 × 108 particles/mL) and were inhibitory at the highest dose tested (2 × 1011 particles/mL). Conversely, extracellular protein fractions had no effect on myogenic differentiation. While the transfer of muscle-enriched miRNAs (myomiRs) has been proposed to mediate the pro-myogenic effects of EVs, we observed that they are scarce in EVs (e.g., 1 copy of miR-133a-3p per 195 EVs). Furthermore, we observed pro-myogenic effects with undifferentiated myoblast-derived EVs, in which myomiR concentrations are even lower, suggestive of a myomiR-independent mechanism underlying the observed pro-myogenic effects. During these investigations we identified technical factors with profound confounding effects on myogenic differentiation. Specifically, co-purification of insulin (a component of Opti-MEM) in non-EV LC fractions and polymer precipitated EV preparations. These findings provide further evidence that polymer-based precipitation techniques should be avoided in EV research.

3.
Nat Commun ; 14(1): 4313, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37463901

RESUMEN

Metastatic breast-cancer is a major cause of death in women worldwide, yet the relationship between oncogenic drivers that promote metastatic versus primary cancer is still contentious. To elucidate this relationship in treatment-naive animals, we hereby describe mammary-specific transposon-mutagenesis screens in female mice together with loss-of-function Rb, which is frequently inactivated in breast-cancer. We report gene-centric common insertion-sites (gCIS) that are enriched in primary-tumors, in metastases or shared by both compartments. Shared-gCIS comprise a major MET-RAS network, whereas metastasis-gCIS form three additional hubs: Rho-signaling, Ubiquitination and RNA-processing. Pathway analysis of four clinical cohorts with paired primary-tumors and metastases reveals similar organization in human breast-cancer with subtype-specific shared-drivers (e.g. RB1-loss, TP53-loss, high MET, RAS, ER), primary-enriched (EGFR, TGFß and STAT3) and metastasis-enriched (RHO, PI3K) oncogenic signaling. Inhibitors of RB1-deficiency or MET plus RHO-signaling cooperate to block cell migration and drive tumor cell-death. Thus, targeting shared- and metastasis- but not primary-enriched derivers offers a rational avenue to prevent metastatic breast-cancer.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Animales , Ratones , Neoplasias de la Mama/patología , Transducción de Señal , Metástasis de la Neoplasia
4.
Mol Cell Oncol ; 5(4): e1481814, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30250928

RESUMEN

The dual phosphatase CDC25 has recently been identified as a target for diverse triple-negative breast cancers including RB1/PTEN/P53-deficient tumors. Moreover, CDC25 inhibitors effectively synergize with PI3K inhibitors to suppress tumor growth. We discuss these findings and the challenges that lie ahead in bringing CDC25 inhibitors to the clinic.

5.
Cell Rep ; 23(1): 112-126, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29617654

RESUMEN

CDK4/6 inhibitors are effective against cancer cells expressing the tumor suppressor RB1, but not RB1-deficient cells, posing the challenge of how to target RB1 loss. In triple-negative breast cancer (TNBC), RB1 and PTEN are frequently inactivated together with TP53. We performed kinome/phosphatase inhibitor screens on primary mouse Rb/p53-, Pten/p53-, and human RB1/PTEN/TP53-deficient TNBC cell lines and identified CDC25 phosphatase as a common target. Pharmacological or genetic inhibition of CDC25 suppressed growth of RB1-deficient TNBC cells that are resistant to combined CDK4/6 plus CDK2 inhibition. Minimal cooperation was observed in vitro between CDC25 antagonists and CDK1, CDK2, or CDK4/6 inhibitors, but strong synergy with WEE1 inhibition was apparent. In accordance with increased PI3K signaling following long-term CDC25 inhibition, CDC25 and PI3K inhibitors effectively synergized to suppress TNBC growth both in vitro and in xenotransplantation models. These results provide a rationale for the development of CDC25-based therapies for diverse RB1/PTEN/TP53-deficient and -proficient TNBCs.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Fosfatasas cdc25/antagonistas & inhibidores , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/uso terapéutico , Femenino , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Proteínas de Unión a Retinoblastoma/genética , Proteínas de Unión a Retinoblastoma/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismo
6.
Trends Cancer ; 3(11): 768-779, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29120753

RESUMEN

A switch from catabolic to anabolic metabolism, a major hallmark of cancer, enables rapid cell duplication, and is driven by multiple oncogenic alterations, including PIK3CA mutation, MYC amplification, and TP53 loss. However, tumor growth requires active mitochondrial function and oxidative phosphorylation (OXPHOS). Recently, loss of the retinoblastoma (RB1) tumor suppressor in breast cancer was shown to induce mitochondrial protein translation (MPT) and OXPHOS. Here, we discuss how increased OXPHOS can enhance anabolic metabolism and cell proliferation, as well as cancer stemness and metastasis. Mitochondrial STAT3, FER/FER-T, and CHCHD2 are also implicated in OXPHOS. We propose that RB1 loss represents a prototypic oncogenic alteration that promotes OXPHOS, that aggressive tumors acquire lethal combinations of oncogenes and tumor suppressors that stimulate anabolism versus OXPHOS, and that targeting both metabolic pathways would be therapeutic.


Asunto(s)
Neoplasias de la Mama/metabolismo , Mitocondrias/metabolismo , Células Madre Neoplásicas/metabolismo , Proteínas de Unión a Retinoblastoma/genética , Ubiquitina-Proteína Ligasas/genética , Anabolizantes/uso terapéutico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Glucólisis/genética , Humanos , Mitocondrias/genética , Metástasis de la Neoplasia , Células Madre Neoplásicas/patología , Fosforilación Oxidativa , Proteínas de Unión a Retinoblastoma/deficiencia , Ubiquitina-Proteína Ligasas/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...