Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Occup Environ Hyg ; 19(12): 696-705, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36197119

RESUMEN

With advances in technology, there are an increasing number of direct-reading instruments available to occupational health and safety professionals to evaluate occupational aerosol exposures. Despite the wide array of direct-reading instruments available to professionals, the adoption of direct-reading technology to monitor workplace exposures has been limited, partly due to a lack of knowledge on how the instruments operate, how to select an appropriate instrument, and challenges in data analysis techniques. This paper presents a review of direct-reading aerosol instruments available to occupational health and safety professionals, describes the principles of operation, guides instrument selection based on the workplace and exposure, and discusses data analysis techniques to overcome these barriers to adoption. This paper does not cover all direct-reading instruments for aerosols but only those that an occupational health and safety professional could use in a workplace to evaluate exposures. Therefore, this paper focuses on instruments that have the most potential for workplace use due to their robustness, past workplace use, and price with regard to return on investment. The instruments covered in this paper include those that measure aerosol number concentration, mass concentration, and aerosol size distributions.


Asunto(s)
Contaminantes Ocupacionales del Aire , Exposición Profesional , Salud Laboral , Humanos , Contaminantes Ocupacionales del Aire/análisis , Tamaño de la Partícula , Monitoreo del Ambiente/métodos , Lectura , Exposición Profesional/prevención & control , Exposición Profesional/análisis , Aerosoles/análisis
2.
J Occup Environ Hyg ; 19(12): 706-729, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36197433

RESUMEN

Direct reading instruments (DRIs) for aerosols have been used in industrial hygiene practice for many years, but their potential has not been fully realized by many occupational health and safety professionals. Although some DRIs quantify other metrics, this article will primarily focus on DRIs that measure aerosol number, size, or mass. This review addresses three applications of aerosol DRIs that occupational health and safety professionals can use to discern, characterize, and document exposure conditions and resolve aerosol-related problems in the workplace. The most common application of aerosol DRIs is the evaluation of engineering controls. Examples are provided for many types of workplaces and situations including construction, agriculture, mining, conventional manufacturing, advanced manufacturing (nanoparticle technology and additive manufacturing), and non-industrial sites. Aerosol DRIs can help identify the effectiveness of existing controls and, as needed, develop new strategies to reduce potential aerosol exposures. Aerosol concentration mapping (ACM) using DRI data can focus attention on emission sources in the workplace spatially illustrate the effectiveness of controls and constructively convey concerns to management and workers. Examples and good practices of ACM are included. Video Exposure Monitoring (VEM) is another useful technique in which video photography is synced with the concentration output of an aerosol DRI. This combination allows the occupational health and safety professional to see what tasks, environmental situations, and/or worker actions contribute to aerosol concentration and potential exposure. VEM can help identify factors responsible for temporal variations in concentration. VEM can assist with training, engage workers, convince managers about necessary remedial actions, and provide for continuous improvement of the workplace environment. Although using DRIs for control evaluation, ACM and VEM can be time-consuming, the resulting information can provide useful data to prompt needed action by employers and employees. Other barriers to adoption include privacy and security issues in some worksites. This review seeks to provide information so occupational health and safety professionals can better understand and effectively use these powerful applications of aerosol DRIs.


Asunto(s)
Contaminantes Ocupacionales del Aire , Nanopartículas , Exposición Profesional , Salud Laboral , Humanos , Exposición Profesional/prevención & control , Exposición Profesional/análisis , Lugar de Trabajo , Aerosoles/análisis , Monitoreo del Ambiente/métodos , Contaminantes Ocupacionales del Aire/análisis
3.
J Occup Environ Hyg ; 14(5): 368-376, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27875101

RESUMEN

The nanoparticle respiratory deposition (NRD) sampler is a personal sampler that combines a cyclone, impactor, and a nylon mesh diffusion stage to measure a worker's exposure to nanoparticles. The concentration of titanium in the nylon mesh of the diffusion stage complicates the application of the NRD sampler for assessing exposures to titanium dioxide nanoparticles. This study evaluated commercially available nonwoven textiles for use as an alternative media in the diffusion stage of the NRD sampler. Three textiles were selected as containing little titanium from an initial screening of 11 textiles by field portable x-ray fluorescence (FPXRF). Further evaluation on these three textiles was conducted to determine the concentration of titanium and other metals by inductively coupled plasma-optical emission spectroscopy (ICP-OES), the number of layers required to achieve desired collection characteristics for use as the diffusion stage in the NRD sampler (i.e., the nanoparticulate matter, NPM, criterion), and the pressure drop associated with that number of layers. Only three (two composed of cotton fibers, C1 and C2; and one of viscose bamboo and cotton fibers, BC) of 11 textiles screened had titanium concentrations below the limit of detection the XRF device (0.15 µg/cm2). Multiple metals, including small amounts of titanium, were found in each of the three nonwoven textiles using ICP-OES. The number of 25-mm-diameter layers required to achieve the collection efficiency by size required for the NRD sampler was three for C1 (R2 = 0.95 with reference to the NPM criterion), two for C2 (R2 = 0.79), and three for BC (R2 = 0.87). All measured pressure drops were less than theoretical and even the greatest pressure drop of 65.4 Pa indicated that a typical personal sampling pump could accommodate any of the three nonwoven textiles in the NRD sampler. The titanium concentration, collection efficiency, and measured pressure drops show there is a potential for nonwoven textiles to be used as the diffusion stage of the NRD sampler.


Asunto(s)
Monitoreo del Ambiente/instrumentación , Exposición por Inhalación/análisis , Nanopartículas/análisis , Textiles , Contaminantes Ocupacionales del Aire/análisis , Celulosa , Fibra de Algodón , Monitoreo del Ambiente/métodos , Ensayo de Materiales , Exposición Profesional/análisis , Sasa , Titanio/análisis , Titanio/química
4.
J Occup Environ Hyg ; 14(4): 237-242, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27754825

RESUMEN

One of the leading causes of noise-induced hearing loss is occupational noise exposure; however, little attention has been given to the exposure among amusement ride operators. According to the International Association of Amusement Parks and Attractions, 600,000 ride operators are employed in the U.S. The first objective of this descriptive study was to evaluate if ride operators were exposed to noise levels over 85 dB. The second objective was to classify the ride features that led to the highest noise levels. 136 rides were measured at 17 total amusement parks, county fairs, and festivals in southern Wisconsin and northern Illinois during summer 2015. A sound level meter recorded noise measurements as close in proximity to the ride operator as possible. Each ride was measured for two or three complete ride cycles, which included loading and operating the ride. The sound level meter was programmed to measure noise as recommended by the American Conference of Governmental Industrial Hygienists and with no threshold. 18% of rides measured had projected noise levels greater than American Conference of Governmental Industrial Hygienists recommendation of 85 dB. A repeated measures model was used to analyze the complete ride cycle decibel levels. The model found that traveling carnival rides had significantly higher levels compared to the stationary amusement park rides (p < 0.001), the rides operated near midway music had significantly higher levels than those without midway music (p < 0.001), and the type of ride was also significant. Tukey-Kramer multiple comparison test was used to determine differences in type of ride. According to the data, 18% of the amusement ride operators would be at risk for noise induced hearing loss and would require a hearing conservation program if the 8-hr time weighted averages were to follow the same trends as the complete ride cycle levels.


Asunto(s)
Ruido en el Ambiente de Trabajo/estadística & datos numéricos , Exposición Profesional/análisis , Monitoreo del Ambiente , Pérdida Auditiva Provocada por Ruido/prevención & control , Humanos , Illinois/epidemiología , Música , Instalaciones Deportivas y Recreativas , Wisconsin/epidemiología
5.
J Occup Environ Hyg ; 12(10): 686-91, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26011417

RESUMEN

Previous research shows that police officers are at a higher risk for noise induced hearing loss (NIHL). Little data exists on the occupational tasks, outside of the firing range, that might lead to the increased risk of NIHL. The current study collected noise dosimetry from patrol officers in a smaller department and a larger department in southern Wisconsin, United States. The noise dosimeters simultaneously measured noise in three virtual dosimeters that had different thresholds, criterion levels, and exchange rates. The virtual dosimeters were set to: the Occupational Safety and Health Administration (OSHA) hearing conservation criteria (OSHA-HC), the OSHA permissible exposure level criteria (OSHA-PEL), and the American Conference of Governmental Industrial Hygienists (ACGIH). In addition to wearing a noise dosimeter during their respective work days, officers completed a log form documenting the type of task performed, the duration of that task, if the task involved the use of a siren, and officer characteristics that may have influenced their noise exposure, such as the type of dispatch radio unit worn. Analysis revealed that the normalized 8-hour time weighted averages (TWA) for all officers fell below the recommended OSHA and ACGIH exposure limits. The tasks involving the use of the siren had significantly higher levels than the tasks without (p = 0.005). The highest noise exposure levels were encountered when patrol officers were assisting other public safety agencies such as a fire department or emergency medical services (79 dBA). Canine officers had higher normalized 8-hr TWA noise exposure than regular patrol officers (p = 0.002). Officers with an evening work schedule had significantly higher noise exposure than the officers with a day or night work schedule (p = 0.023). There were no significant differences in exposure levels between the two departments (p = 0.22). Results suggest that this study population is unlikely to experience NIHL as established by the OSHA or ACGIH occupational exposure levels from the daily occupational tasks that were monitored.


Asunto(s)
Monitoreo del Ambiente/métodos , Ruido en el Ambiente de Trabajo/estadística & datos numéricos , Exposición Profesional/análisis , Policia/estadística & datos numéricos , Adulto , Animales , Perros , Femenino , Pérdida Auditiva Provocada por Ruido/prevención & control , Humanos , Masculino , Persona de Mediana Edad , Salud Laboral , Análisis y Desempeño de Tareas , Estados Unidos , United States Occupational Safety and Health Administration , Wisconsin/epidemiología
6.
Ann Occup Hyg ; 58(4): 424-36, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24458322

RESUMEN

The model DC2000CE diffusion charger from EcoChem Analytics (League City, TX, USA) has the potential to be of considerable use to measure airborne surface area concentrations of nanoparticles in the workplace. The detection efficiency of the DC2000CE to reference instruments was determined with monodispersed spherical particles from 54 to 565.7 nm. Surface area concentrations measured by a DC2000CE were then compared to measured and detection efficiency adjusted reference surface area concentrations for polydispersed aerosols (propylene torch exhaust, incense, diesel exhaust, and Arizona road dust) over a range of particle sizes that may be encountered in a workplace. The ratio of surface area concentrations measured by the DC2000CE to that measured with the reference instruments for unimodal and multimodal aerosols ranged from 0.02 to 0.52. The ratios for detection efficiency adjusted unimodal and multimodal surface area concentrations were closer to unity (0.93-1.19) for aerosols where the majority of the surface area was within the size range of particles used to create the correction. A detection efficiency that includes the entire size range of the DC2000CE is needed before a calibration correction for the DC2000CE can be created. For diesel exhaust, the DC2000CE retained a linear response compared to reference instruments up to 2500 mm(2) m(-3), which was greater than the maximum range stated by the manufacturer (1000 mm(2) m(-3)). Physical limitations with regard to DC2000CE orientation, movement, and vibration were identified. Vibrating the DC2000CE while measuring aerosol concentrations may cause an increase of ~35 mm(2) m(-3), whereas moving the DC2000CE may cause concentrations to be inflated by as much as 400 mm(2) m(-3). Depending on the concentration of the aerosol of interest being measured, moving or vibrating a DC2000CE while measuring the aerosol should be avoided.


Asunto(s)
Aerosoles/análisis , Contaminantes Ocupacionales del Aire/análisis , Monitoreo del Ambiente/instrumentación , Nanopartículas/análisis , Lugar de Trabajo , Contaminación del Aire Interior/análisis , Calibración , Monitoreo del Ambiente/métodos , Humanos , Tamaño de la Partícula , Emisiones de Vehículos/análisis
7.
Aerosol Sci Technol ; 47(4): 435-443, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-26900207

RESUMEN

A four-stage personal diffusion battery (pDB) was designed and constructed to measure submicron particle size distributions. The pDB consisted of a screen-type diffusion battery, solenoid valve system, and electronic controller. A data inversion spreadsheet was created to solve for the number median diameter (NMD), geometric standard deviation (GSD), and particle number concentration of unimodal aerosols using stage number concentrations from the pDB combined with a handheld condensation particle counter (pDB+CPC). The inversion spreadsheet included particle entry losses, theoretical penetrations across screens, the detection efficiency of the CPC, and constraints so the spreadsheet solved to values within the pDB range. Size distribution parameters (NMD, GSD, and number concentration) measured with the pDB+CPC with inversion spreadsheet were within 25% of those measured with a scanning mobility particle sizer (SMPS) for 5 of 12 polydisperse combustion aerosols. For three tests conducted with propylene torch exhaust, the pDB+CPC with inversion spreadsheet successfully identified that the NMD was smaller than the constraint value of 16 nm. The ratio of the nanoparticle portion of the aerosol compared to the reference (Rnano) was calculated to determine the ability of pDB+CPC with inversion spreadsheet to measure the nanoparticle portion of the aerosols. The Rnano ranged from 0.87 to 1.01 when the inversion solved and from 0.06 to 2.01 when the inversion solved to a constraint. The pDB combined with CPC has limited use as a personal monitor but combining the pDB with a different detector would allow for the pDB to be used as a personal monitor.

8.
J Occup Environ Hyg ; 8(3): 139-46, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21347955

RESUMEN

One form of waterproof, breathable apparel is manufactured from polytetrafluoroethylene (PTFE) membrane laminated fabric using a specific process to seal seams that have been sewn with traditional techniques. The sealing process involves applying waterproof tape to the seam by feeding the seam through two rollers while applying hot air (600 °C). This study addressed the potential for exposure to particulate matter from this sealing process by characterizing airborne particles in a facility that produces more than 1000 lightweight PTFE rain jackets per day. Aerosol concentrations throughout the facility were mapped, breathing zone concentrations were measured, and hoods used to ventilate the seam sealing operation were evaluated. The geometric mean (GM) particle number concentrations were substantially greater in the sewing and sealing areas (67,000 and 188,000 particles cm⁻³)) compared with that measured in the office area (12,100 particles cm⁻³). Respirable mass concentrations were negligible throughout the facility (GM = 0.002 mg m⁻³) in the sewing and sealing areas). The particles exiting the final discharge of the facility's ventilation system were dominated by nanoparticles (number median diameter = 25 nm; geometric standard deviation of 1.39). The breathing zone particle number concentrations of the workers who sealed the sewn seams were highly variable and significantly greater when sealing seams than when conducting other tasks (p < 0.0001). The sealing workers' breathing zone concentrations ranged from 147,000 particles cm⁻³ to 798,000 particles cm⁻³, and their seam responsibility significantly influenced their breathing zone concentrations (p = 0.03). The finding that particle number concentrations were approximately equal outside the hood and inside the local exhaust duct indicated poor effectiveness of the canopy hoods used to ventilate sealing operations.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Vestuario , Nanopartículas/análisis , Exposición Profesional , Material Particulado/análisis , Politetrafluoroetileno , Arquitectura y Construcción de Instituciones de Salud/normas , Humanos , Equipos de Seguridad/normas , Textiles , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...