Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biotechnol Appl Biochem ; 71(1): 5-16, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37743549

RESUMEN

Suicide gene therapy involves introducing viral or bacterial genes into tumor cells, which enables the conversion of a nontoxic prodrug into a toxic-lethal drug. The application of the bacterial cytosine deaminase (bCD)/5-fluorocytosine (5-FC) approach has been beneficial and progressive within the current field of cancer therapy because of the enhanced bystander effect. The basis of this method is the preferential deamination of 5-FC to 5-fluorouracil by cancer cells expressing cytosine deaminase (CD), which strongly inhibits DNA synthesis and RNA function, effectively targeting tumor cells. However, the poor binding affinity of toward 5-FC compared to the natural substrate cytosine and/or inappropriate thermostability limits the clinical applications of this gene therapy approach. Nowadays, many genetic engineering studies have been carried out to solve and improve the activity of this enzyme. In the current review, we intend to discuss the biotechnological aspects of Escherichia coli CD, including its structure, functions, molecular cloning, and protein engineering. We will also explore its relevance in cancer clinical trials. By examining these aspects, we hope to provide a thorough understanding of E. coli CD and its potential applications in cancer therapy.


Asunto(s)
Citosina Desaminasa , Profármacos , Humanos , Citosina Desaminasa/genética , Citosina Desaminasa/metabolismo , Escherichia coli/metabolismo , Fluorouracilo/química , Flucitosina/farmacología , Flucitosina/metabolismo , Terapia Genética , Profármacos/metabolismo
2.
Cell Biochem Funct ; 41(8): 959-977, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37787641

RESUMEN

Recently, efforts have been made to recognize the precise reason(s) for transplant failure and the process of rejection utilizing the molecular signature. Most transplant recipients do not appreciate the unknown length of survival of allogeneic grafts with the existing standard of care. Two noteworthy immunological pathways occur during allogeneic transplant rejection. A nonspecific innate immune response predominates in the early stages of the immune reaction, and allogeneic antigens initiate a donor-specific adaptive reaction. Though the adaptive response is the major cause of allograft rejection, earlier pro-inflammatory responses that are part of the innate immune response are also regarded as significant in graft loss. The onset of the innate and adaptive immune response causes chronic and acute transplant rejection. Currently employed immunosuppressive medications have shown little or no influence on chronic rejection and, as a result, on overall long-term transplant survival. Furthermore, long-term pharmaceutical immunosuppression is associated with side effects, toxicity, and an increased risk of developing diseases, both infectious and metabolic. As a result, there is a need for the development of innovative donor-specific immunosuppressive medications to regulate the allorecognition pathways that induce graft loss and to reduce the side effects of immunosuppression. Efferocytosis is an immunomodulatory mechanism with fast and efficient clearance of apoptotic cells (ACs). As such, AC therapy strategies have been suggested to limit transplant-related sequelae. Efferocytosis-based medicines/treatments can also decrease the use of immunosuppressive drugs and have no detrimental side effects. Thus, this review aims to investigate the impact of efferocytosis on transplant rejection/tolerance and identify approaches using AC clearance to increase transplant viability.


Asunto(s)
Rechazo de Injerto , Tolerancia al Trasplante , Rechazo de Injerto/prevención & control , Terapia de Inmunosupresión , Apoptosis
3.
Cell Tissue Res ; 394(1): 55-74, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37480408

RESUMEN

Endometriosis is a gynecological inflammatory disorder characterized by the development of endometrial-like cells outside the uterine cavity. This disease is associated with a wide range of clinical presentations, such as debilitating pelvic pain and infertility issues. Endometriosis diagnosis is not easily discovered by ultrasound or clinical examination. Indeed, difficulties in noninvasive endometriosis diagnosis delay the confirmation and management of the disorder, increase symptoms, and place a significant medical and financial burden on patients. So, identifying specific and sensitive biomarkers for this disease should therefore be a top goal. Exosomes are extracellular vesicles secreted by most cell types. They transport between cells' bioactive molecules such as noncoding RNAs and proteins. MicroRNAs and long noncoding RNAs which are key molecules transferred by exosomes have recently been identified to have a significant role in endometriosis by modulating different proteins and their related genes. As a result, the current review focuses on exosomal micro-and-long noncoding RNAs that are involved in endometriosis disease. Furthermore, major molecular mechanisms linking corresponding RNA molecules to endometriosis development will be briefly discussed to better clarify the potential functions of exosomal noncoding RNAs in the therapy and diagnosis of endometriosis.


Asunto(s)
Endometriosis , Exosomas , MicroARNs , ARN Largo no Codificante , Femenino , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Endometriosis/diagnóstico , Endometriosis/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Biomarcadores/metabolismo , Exosomas/genética , Exosomas/metabolismo
4.
Clin Chim Acta ; 540: 117216, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36592922

RESUMEN

Gastrointestinal cancer (GIC) remains a leading cause of morbidity and mortality worldwide. Unfortunately, these cancers are diagnosed in advanced metastatic stages due to lack of reliable biomarkers that are sufficiently specific and sensitive in early disease. There has been growing evidence that circulating exosomes can be used to diagnose cancer non-invasively with limited risks and side effects. Furthermore, exosomal long non-coding RNAs (lncRNAs) are emerging as a new class of promising biomarkers in cancer. This review provides an overview of the extraction and detection of exosomal lncRNAs with a focus on their potential role in GIC.


Asunto(s)
Exosomas , Neoplasias Gastrointestinales , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Neoplasias Gastrointestinales/diagnóstico , Neoplasias Gastrointestinales/genética , Biomarcadores de Tumor/genética , Exosomas/genética , Regulación Neoplásica de la Expresión Génica
5.
Sci Rep ; 12(1): 11683, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35804032

RESUMEN

Malaria is a complex disease caused by parasites of the genus Plasmodium and is the leading cause of morbidity and mortality worldwide. The most severe form of malaria disease is caused by Plasmodium falciparum. Thus, a combination of different approaches is needed to control malaria. Resistance to first-line drugs and insecticides, on the other hand, makes the need for an effective vaccination more urgent than ever. Because erythrocyte parasites cause the most clinical symptoms, developing a vaccination for this stage of infection might be highly beneficial. In this research, we employed various bioinformatics methods to create an efficient multi-epitope vaccine that induces antibodies against the blood stage of malaria infection. For this purpose, we selected the malaria PfGARP protein as the target here. The B, HTL epitopes, and epitope conservation were predicted. The predicted epitopes (including 5 B and 5 HTL epitopes) were connected using suitable linkers, and the flagellin molecule was used as an adjuvant to improve its immunogenicity. The final construct vaccine with 414 amino acids long was designed. The vaccine's allergenicity, antigenicity, solubility, physicochemical characteristics, 2D and 3D structure modeling, molecular docking, molecular dynamics simulation, in silico cloning, and immunological simulation were tested. In silico immune simulation results showed significantly elevated IgG1 and IgM and T helper cells, INF γ, IL 2, and B-cell populations after the injection of the designed vaccine. These significant computational analyses indicated that our proposed vaccine candidate might activate suitable immune responses against malaria. However, in vitro and in vivo studies are essential for further validation.


Asunto(s)
Malaria , Vacunas , Biología Computacional/métodos , Epítopos de Linfocito B , Epítopos de Linfocito T , Humanos , Malaria/prevención & control , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Vacunas de Subunidad
7.
Cancer Biother Radiopharm ; 36(7): 579-587, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32644826

RESUMEN

Background: Glioblastoma is a malignant and very aggressive brain tumor with a poor prognosis. Despite having chemotherapy concomitant with surgery and/or radiation therapy, the median survival of glioblastoma-affected people is less than 1 year. Temozolomide (TMZ) is a chemotherapeutic used as a first line treatment of glioblastoma. Several studies have reported that resistance to TMZ due to overexpression of O6-methylguanine-DNA methyltransferase (MGMT) is the main reason for treatment failure. Several studies described that pulsed-electromagnetic field (EMF) exposure could induce cell death and influence gene expression. Materials and Methods: In this study the authors assessed the effects of EMF (50 Hz, 70 G) on cytotoxicity, cell migration, gene expression, and protein levels in TMZ-treated T98 and A172 cell lines. Results: In this study, the authors show that treatment with a combination of TMZ and EMF enhanced cell death and decreased the migration potential of T98 and A172 cells. The authors also observed overexpression of the p53 gene and downregulation of cyclin-D1 protein in comparison to controls. In addition, T98 cells expressed the MGMT protein following treatment, while the A172 cells did not express MGMT. Conclusion: Their data indicate that EMF exposure improved the cytotoxicity of TMZ on T98 and A172 cells and could partially affect resistance to TMZ in T98 cells.


Asunto(s)
Neoplasias Encefálicas/terapia , Ciclina D2/biosíntesis , Metilasas de Modificación del ADN/biosíntesis , Enzimas Reparadoras del ADN/biosíntesis , Glioblastoma/terapia , Magnetoterapia , Temozolomida/farmacología , Proteína p53 Supresora de Tumor/biosíntesis , Proteínas Supresoras de Tumor/biosíntesis , Antineoplásicos Alquilantes/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/efectos de la radiación , Ciclina D2/genética , Resistencia a Antineoplásicos/efectos de la radiación , Campos Electromagnéticos , Expresión Génica/efectos de los fármacos , Expresión Génica/efectos de la radiación , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...