Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci Space Res (Amst) ; 41: 80-85, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38670656

RESUMEN

The disuse of skeletal limb muscles occurs in a variety of conditions, yet our comprehension of the molecular mechanisms involved in adaptation to disuse remains incomplete. We studied the mechanical characteristics of actin-myosin interaction using an in vitro motility assay and isoform composition of myosin heavy and light chains by dint of SDS-PAGE in soleus muscle of both control and hindlimb-unloaded rats. 14 days of hindlimb unloading led to the increased maximum sliding velocity of actin, reconstituted, and native thin filaments over rat soleus muscle myosin by 24 %, 19 %, and 20 %, respectively. The calcium sensitivity of the "pCa-velocity" relationship decreased. There was a 26 % increase in fast myosin heavy chain IIa (MHC IIa), a 22 % increase in fast myosin light chain 2 (MLC 2f), and a 13 % increase in fast MLC 1f content. The content of MLC 1s/v, typical for slow skeletal muscles and cardiac ventricles did not change. At the same time, MLC 1s, typical only for slow skeletal muscles, disappeared. The maximum velocity of soleus muscle native thin filaments was 24 % higher compared to control ones sliding over the same rabbit myosin. Therefore, both myosin and native thin filament kinetics could influence the mechanical characteristics of the soleus muscle. Additionally, the MLC 1s and MLC 1s/v ratio may contribute to the mechanical characteristics of slow skeletal muscle, along with MHC, MLC 2, and MLC 1 slow/fast isoforms ratio.


Asunto(s)
Suspensión Trasera , Músculo Esquelético , Ratas Wistar , Animales , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Ratas , Masculino , Cadenas Pesadas de Miosina/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Conejos , Miosinas/metabolismo , Calcio/metabolismo , Citoesqueleto de Actina/metabolismo , Isoformas de Proteínas
2.
Int J Mol Sci ; 24(13)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37445756

RESUMEN

The binding of calcium and magnesium ions to proteins is crucial for regulating heart contraction. However, other divalent cations, including xenobiotics, can accumulate in the myocardium and enter cardiomyocytes, where they can bind to proteins. In this article, we summarized the impact of these cations on myosin ATPase activity and EF-hand proteins, with special attention given to toxic cations. Optimal binding to EF-hand proteins occurs at an ionic radius close to that of Mg2+ and Ca2+. In skeletal Troponin C, Cd2+, Sr2+, Pb2+, Mn2+, Co2+, Ni2+, Ba2+, Mg2+, Zn2+, and trivalent lanthanides can substitute for Ca2+. As myosin ATPase is not a specific MgATPase, Ca2+, Fe2+, Mn2+, Ni2+, and Sr2+ could support myosin ATPase activity. On the other hand, Zn2+ and Cu2 significantly inhibit ATPase activity. The affinity to various divalent cations depends on certain proteins or their isoforms and can alter with amino acid substitution and post-translational modification. Cardiac EF-hand proteins and the myosin ATP-binding pocket are potential molecular targets for toxic cations, which could significantly alter the mechanical characteristics of the heart muscle at the molecular level.


Asunto(s)
Proteínas Contráctiles , Corazón , Cationes Bivalentes/farmacología , Miosinas/metabolismo , Cationes , Calcio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...