Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 619-620: 1515-1529, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29734626

RESUMEN

The contribution of main PM pollution sources and their geographic origin in three urban sites of the Danube macro-region (Zagreb, Budapest and Sofia) were determined by combining receptor and Lagrangian models. The source contribution estimates were obtained with the Positive Matrix Factorization (PMF) receptor model and the results were further examined using local wind data and backward trajectories obtained with FLEXPART. Potential Source Contribution Function (PSCF) analysis was applied to identify the geographical source areas for the PM sources subject to long-range transport. Gas-to-particle transformation processes and primary emissions from biomass burning are the most important contributors to PM in the studied sites followed by re-suspension of soil (crustal material) and traffic. These four sources can be considered typical of the Danube macro-region because they were identified in all the studied locations. Long-range transport was observed of: a) sulphate-enriched aged aerosols, deriving from SO2 emissions in combustion processes in the Balkans and Eastern Europe and b) dust from the Saharan and Karakum deserts. The study highlights that PM pollution in the studied urban areas of the Danube macro-region is the result of both local sources and long-range transport from both EU and no-EU areas.

2.
Sci Total Environ ; 574: 216-233, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27639019

RESUMEN

The international experimental campaign Hygroscopic Aerosols to Cloud Droplets (HygrA-CD), organized in the Greater Athens Area (GAA), Greece from 15 May to 22 June 2014, aimed to study the physico-chemical properties of aerosols and their impact on the formation of clouds in the convective Planetary Boundary Layer (PBL). We found that under continental (W-NW-N) and Etesian (NE) synoptic wind flow and with a deep moist PBL (~2-2.5km height), mixed hygroscopic (anthropogenic, biomass burning and marine) particles arrive over the GAA, and contribute to the formation of convective non-precipitating PBL clouds (of ~16-20µm mean diameter) with vertical extent up to 500m. Under these conditions, high updraft velocities (1-2ms-1) and cloud condensation nuclei (CCN) concentrations (~2000cm-3 at 1% supersaturation), generated clouds with an estimated cloud droplet number of ~600cm-3. Under Saharan wind flow conditions (S-SW) a shallow PBL (<1-1.2km height) develops, leading to much higher CCN concentrations (~3500-5000cm-3 at 1% supersaturation) near the ground; updraft velocities, however, were significantly lower, with an estimated maximum cloud droplet number of ~200cm-3 and without observed significant PBL cloud formation. The largest contribution to cloud droplet number variance is attributed to the updraft velocity variability, followed by variances in aerosol number concentration.

3.
J Environ Radioact ; 114: 100-4, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22197531

RESUMEN

As a result of the nuclear accident in Fukushima Dai-ichi power plant, which started on March 11, 2011, radioactive pollutants were transferred by air masses to various regions of the Northern hemisphere, including Europe. Very low concentrations of (131)I, (137)Cs and (134)Cs in airborne particulate matter were measured in Athens, Greece during the period of March 24 to April 28, 2011. The maximum air concentration of (131)I was measured on April 6, 2011 and equaled 490 ± 35 µBq m(-3). The maximum values of the two cesium isotopes were measured on the same day and equaled 180 ± 40 µBq m(-3) for (137)Cs and 160 ± 30 µBq m(-3) for (134)Cs. The average activity ratio of (131)I/(137)Cs in air was 3.0 ± 0.5, while the corresponding ratio of (137)Cs/(134)Cs equaled 1.1 ± 0.3. No artificial radionuclides could be detected in air after April 28, 2011. Traces of (131)I as a result of radioactive deposition were measured in grass, soil, sheep milk and meat. The total deposition of (131)I (dry + wet) was 34 ± 4 Bq m(-2), and of (137)Cs was less than 10 Bq m(-2). The maximum concentration of (131)I in grass was 2.1 ± 0.4 Bg kg(-1), while (134)Cs was not detected. The maximum concentrations of (131)I and (137)Cs in sheep milk were 1.7 ± 0.16 Bq kg(-1) and 0.6 ± 0.12 Bq kg(-1) respectively. Concentrations of (131)I up to 1.3 ± 0.2 Bq kg(-1) were measured in sheep meat. Traces of (131)I were found in a number of soil samples. The radiological impact of the Fukushima nuclear accident in Athens region was practically negligible, especially as compared to that of the Chernobyl accident and also to that of natural radioactivity.


Asunto(s)
Radioisótopos de Cesio , Contaminación Radiactiva de Alimentos/análisis , Accidente Nuclear de Fukushima , Radioisótopos de Yodo , Contaminantes Radiactivos/análisis , Animales , Accidente Nuclear de Chernóbil , Grecia , Japón , Carne/análisis , Leche/química , Poaceae/química , Monitoreo de Radiación , Ovinos , Suelo/análisis , Ucrania
4.
Indoor Air ; 17(2): 143-52, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17391237

RESUMEN

UNLABELLED: Some indoor activities increase the number concentration of small particles and, hence, enhance the dose delivered to the lungs. The received particle dose indoors may exceed noticeably the dose from ambient air under routine in-house activities like cooking. In the present work, the internal dose by inhalation of ultrafine and fine particles is assessed, using an appropriate mechanistic model of lung deposition, accommodating aerosol, and inhalation dynamics. The analysis is based on size distribution measurements (10-350 nm) of indoor and outdoor aerosol number concentrations in a typical residence in Athens, Greece. Four different cases are examined, namely, a cooking event, a no activity period indoors and the equivalent time periods outdoors. When the cooking event (frying of bacon-eggs with a gas fire) occurred, the amount of deposited particles deep into the lung of an individual indoors exceeded by up to 10 times the amount received by an individual at the same time period outdoors. The fine particle deposition depends on the level of physical exertion and the hygroscopic properties of the inhaled aerosol. The dose is not found linearly dependant on the indoor/outdoor concentrations during the cooking event, whereas it is during the no activity period. PRACTICAL IMPLICATIONS: The necessity for determining the dose in specific regions of the human lung, as well as the non-linear relationship between aerosol concentration and internal dose makes the application of dosimetry models important. Lung dose of fine and ultrafine particles, during a cooking event, is compared with the dose at no indoor activity and the dose received under outdoor exposure conditions. The dose is expressed in terms of number or surface of deposited particles. This permits to address the dosimetry of very small particles, which are released by many indoor sources but represent a slight fraction of the particulate matter mass. The enhancement of the internal dose resulting from fine and ultrafine particles generated during the cooking event vs. the dose when no indoor source is active is assessed. The results for those cases are also compared with the dose calculated for the measured aerosol outdoors.


Asunto(s)
Contaminación del Aire Interior/análisis , Culinaria , Exposición por Inhalación/análisis , Pulmón/fisiología , Modelos Biológicos , Material Particulado/análisis , Aerosoles , Contaminantes Atmosféricos/análisis , Ejercicio Físico , Humanos , Tamaño de la Partícula , Propano
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...