Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 15(7): e0235890, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32658919

RESUMEN

We are currently facing a large decline in bee populations worldwide. Who are the winners and losers? Generalist bee species, notably those able to shift their diet to new or alternative floral resources, are expected to be among the least vulnerable to environmental change. However, studies of interactions between bees and plants over large temporal and geographical scales are limited by a lack of historical records. Here, we used a unique opportunistic century-old countrywide database of bee specimens collected on plants to track changes in the plant-bee interaction network over time. In each historical period considered, and using a network-based modularity analysis, we identified some major groups of species interacting more with each other than with other species (i.e. modules). These modules were related to coherent functional groups thanks to an a posteriory trait-based analysis. We then compared over time the ecological specialization of bees in the network by computing their degree of interaction within and between modules. "True" specialist species (or peripheral species) are involved in few interactions both inside and between modules. We found a global loss of specialist species and specialist strategies. This means that bee species observed in each period tended to use more diverse floral resources from different ecological groups over time, highly specialist species tending to enter/leave the network. Considering the role and functional traits of species in the network, combined with a long-term time series, provides a new perspective for the study of species specialization.


Asunto(s)
Abejas/fisiología , Biodiversidad , Magnoliopsida/fisiología , Modelos Estadísticos , Polinización , Animales , Abejas/clasificación , Conducta Animal
2.
Glob Chang Biol ; 26(3): 1185-1195, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31665557

RESUMEN

Species can respond differently when facing environmental changes, such as by shifting their geographical ranges or through plastic or adaptive modifications to new environmental conditions. Phenotypic modifications related to environmental factors have been mainly explored along latitudinal gradients, but they are relatively understudied through time despite their importance for key ecological interactions. Here we hypothesize that the average bumblebee queen body size has changed in Belgium during the last century. Based on historical and contemporary databases, we first tested if queen body sizes changed during the last century at the intraspecific level among four common bumblebee species and if it could be linked to global warming and/or habitat fragmentation as well as by the replacement by individuals from new populations. Then, we assessed body size changes at the community level, among 22 species, taking into account species population trends (i.e. increasing, stable or decreasing relative abundance). Our results show that the average queen body size of all four bumblebee species increased over the last century. This size increase was significantly correlated to global warming and habitat fragmentation, but not explained by changes in the population genetic structure (i.e. colonization). At the community level, species with stable or increasing relative abundance tend to be larger than declining species. Contrary to theoretical expectations from Bergmann's rule (i.e. increasing body size in colder climates), temperature does not seem to be the main driver of bumblebee body size during the last century as we observed the opposite body size trend. However, agricultural intensification and habitat fragmentation could be alternative mechanisms that shape body size clines. This study stresses the importance of considering alternative global change factors when assessing body size change.


Asunto(s)
Calentamiento Global , Animales , Abejas , Bélgica , Tamaño Corporal , Geografía , Temperatura
3.
Glob Chang Biol ; 24(1): 101-116, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28805965

RESUMEN

Bumblebees in Europe have been in steady decline since the 1900s. This decline is expected to continue with climate change as the main driver. However, at the local scale, land use and land cover (LULC) change strongly affects the occurrence of bumblebees. At present, LULC change is rarely included in models of future distributions of species. This study's objective is to compare the roles of dynamic LULC change and climate change on the projected distribution patterns of 48 European bumblebee species for three change scenarios until 2100 at the scales of Europe, and Belgium, Netherlands and Luxembourg (BENELUX). We compared three types of models: (1) only climate covariates, (2) climate and static LULC covariates and (3) climate and dynamic LULC covariates. The climate and LULC change scenarios used in the models include, extreme growth applied strategy (GRAS), business as might be usual and sustainable European development goals. We analysed model performance, range gain/loss and the shift in range limits for all bumblebees. Overall, model performance improved with the introduction of LULC covariates. Dynamic models projected less range loss and gain than climate-only projections, and greater range loss and gain than static models. Overall, there is considerable variation in species responses and effects were most pronounced at the BENELUX scale. The majority of species were predicted to lose considerable range, particularly under the extreme growth scenario (GRAS; overall mean: 64% ± 34). Model simulations project a number of local extinctions and considerable range loss at the BENELUX scale (overall mean: 56% ± 39). Therefore, we recommend species-specific modelling to understand how LULC and climate interact in future modelling. The efficacy of dynamic LULC change should improve with higher thematic and spatial resolution. Nevertheless, current broad scale representations of change in major land use classes impact modelled future distribution patterns.


Asunto(s)
Abejas , Biodiversidad , Cambio Climático , Unión Europea , Modelos Biológicos , Animales , Conservación de los Recursos Naturales , Europa (Continente)
4.
Sci Rep ; 6: 38289, 2016 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-27917908

RESUMEN

Since the 1950s, bumblebee (Bombus) species are showing a clear decline worldwide. Although many plausible drivers have been hypothesized, the cause(s) of this phenomenon remain debated. Here, genetic diversity in recent versus historical populations of bumblebee species was investigated by selecting four currently restricted and four currently widespread species. Specimens from five locations in Belgium were genotyped at 16 microsatellite loci, comparing historical specimens (1913-1915) with recent ones (2013-2015). Surprisingly, our results showed temporal stability of genetic diversity in the restricted species. Furthermore, both historical and recent populations of restricted species showed a significantly lower genetic diversity than found in populations of co-occurring widespread species. The difference in genetic diversity between species was thus already present before the alleged recent drivers of bumblebee decline could have acted (from the 1950's). These results suggest that the alleged drivers are not directly linked with the genetic variation of currently declining bumblebee populations. A future sampling in the entire distribution range of these species will infer if the observed link between low genetic diversity and population distribution on the Belgium scale correlates with species decline on a global scale.


Asunto(s)
Abejas/genética , Variación Genética , Genética de Población , Genoma de los Insectos , Distribución Animal , Animales , Abejas/anatomía & histología , Abejas/clasificación , Bélgica , Femenino , Genotipo , Masculino , Repeticiones de Microsatélite , Filogenia , Densidad de Población
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...