Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Mol Psychiatry ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38228890

RESUMEN

Previous diffusion MRI studies have reported mixed findings on white matter microstructure alterations in obsessive-compulsive disorder (OCD), likely due to variation in demographic and clinical characteristics, scanning methods, and underpowered samples. The OCD global study was created across five international sites to overcome these challenges by harmonizing data collection to identify consistent brain signatures of OCD that are reproducible and generalizable. Single-shell diffusion measures (e.g., fractional anisotropy), multi-shell Neurite Orientation Dispersion and Density Imaging (NODDI) and fixel-based measures, were extracted from skeletonized white matter tracts in 260 medication-free adults with OCD and 252 healthy controls. We additionally performed structural connectome analysis. We compared cases with controls and cases with early (<18) versus late (18+) OCD onset using mixed-model and Bayesian multilevel analysis. Compared with healthy controls, adult OCD individuals showed higher fiber density in the sagittal stratum (B[SE] = 0.10[0.05], P = 0.04) and credible evidence for higher fiber density in several other tracts. When comparing early (n = 145) and late-onset (n = 114) cases, converging evidence showed lower integrity of the posterior thalamic radiation -particularly radial diffusivity (B[SE] = 0.28[0.12], P = 0.03)-and lower global efficiency of the structural connectome (B[SE] = 15.3[6.6], P = 0.03) in late-onset cases. Post-hoc analyses indicated divergent direction of effects of the two OCD groups compared to healthy controls. Age of OCD onset differentially affects the integrity of thalamo-parietal/occipital tracts and the efficiency of the structural brain network. These results lend further support for the role of the thalamus and its afferent fibers and visual attentional processes in the pathophysiology of OCD.

2.
Neuroimage Clin ; 41: 103554, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38128160

RESUMEN

INTRODUCTION: Although comorbidity of post-traumatic stress disorder (PTSD) with borderline personality disorder (BPD) and/or cluster C personality disorders (CPD) is common, neural correlates of this comorbidity are unknown. METHODS: We acquired functional MRI scans during an emotional face task in participants with PTSD + CPD (n = 34), PTSD + BPD (n = 24), PTSD + BPD + CPD (n = 18) and controls (n = 30). We used ANCOVAs and Bayesian analyses on specific ROIs in a fearful vs. scrambled faces contrast. We also investigated associations with clinical measures. RESULTS: There were no robust differences in brain activation between the groups with ANCOVAs. Transdiagnostically, we found a negative association between severity of dissociation and right insula and right dmPFC activation, and emotion regulation problems with right dmPFC activation. Bayesian analyses showed credible evidence for higher activation in all ROIs in the PTSD + BPD + CPD group compared to PTSD + BPD and PTSD + CPD. DISCUSSION: Our Bayesian and correlation analyses support new dimensional conceptualizations of personality disorders.


Asunto(s)
Trastorno de Personalidad Limítrofe , Trastornos por Estrés Postraumático , Humanos , Teorema de Bayes , Emociones , Trastornos de la Personalidad/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Trastorno de Personalidad Limítrofe/psicología
3.
Clin Park Relat Disord ; 9: 100204, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107671

RESUMEN

Background: Computerized cognitive training may be promising to improve cognitive impairment in Parkinson's disease and has even been suggested to delay cognitive decline. However, evidence to date is limited. The aim of this study was to assess the durability of eight-week cognitive training effects at up to two years follow-up. Methods: One hundred and thirty-six (1 3 6) individuals with Parkinson's disease, subjective cognitive complaints but without severe cognitive impairment (Montreal Cognitive Assessment ≥ 22) participated in this double-blind RCT. Participants underwent an eight-week home-based intervention of either adaptive, computerized cognitive training with BrainGymmer (n = 68) or an active control (n = 68). They underwent extensive neuropsychological assessment, psychiatric questionnaires and motor symptom assessment at baseline and one and two years after the intervention. We used mixed-model analyses to assess changes in cognitive function at follow-up and performed Fisher's exact tests to assess conversion of cognitive status. Results: There were no group differences on any neuropsychological assessment outcome at one- and two-year follow-up. Groups were equally likely to show conversion of cognitive status at follow-up. A considerable amount of assessments was missed (1y: n = 27; 2y: n = 33), most notably due to COVID-19 regulations. Conclusions: Eight-week cognitive training did not affect long-term cognitive function in Parkinson's disease. Future studies may focus on one cognitive subgroup to enhance reliability of study results. Intervention improvements are needed to work towards effective, lasting treatment options.

4.
medRxiv ; 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37961433

RESUMEN

Background: Repetitive transcranial magnetic stimulation (rTMS) is an emerging treatment option for obsessive-compulsive disorder (OCD). The neurobiological mechanisms of rTMS in OCD have, however, been incompletely characterized. We compared clinical outcomes and changes in task-based brain activation following three different rTMS stimulation protocols, all combined with exposure and response prevention (ERP). Methods: In this three-arm proof-of-concept randomized controlled clinical trial, 61 treatment-refractory adult OCD patients received 16 sessions of rTMS immediately prior to ERP over 8 weeks, with task-based functional MRI (tb-fMRI) scans and clinical assessments pre- and post-treatment. Patients received either: high frequency (HF) rTMS to the left dorsolateral prefrontal cortex (DLPFC) (n=19 (6M/13F)); HF rTMS to the left pre-supplementary motor area (preSMA) (n=23 (10M/13F)); or control rTMS to the vertex (n=19 (6M/13F)). Changes in tb-fMRI activation pre-post treatment were compared using both a Bayesian region-of-interest and a general linear model whole-brain approach. Results: Mean OCD symptom severity decreased significantly in all treatment groups (delta=- 10.836, p<0.001, 95% CI [-12.504, -9.168]), with no differences between groups. Response rate in the entire sample was 57.4%. Groups receiving DLPFC or preSMA rTMS showed, respectively, a decrease in planning and error processing task-related activation after treatment that was associated with symptom improvement, while individuals in the vertex rTMS group with greater symptom improvement showed an increase in inhibition-related activation. Conclusions: PreSMA and DLPFC rTMS combined with ERP led to significant symptom improvement related to activation decreases in targeted task networks, although we observed no differences in symptom reduction between groups. This trial was registered at clinicaltrials.gov ( NCT03667807 ).

5.
Mov Disord ; 38(11): 2131-2135, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37670567

RESUMEN

BACKGROUND: Preliminary studies suggested seasonality of dopaminergic functioning, but it is unknown whether dopamine transporter (DAT) expression in humans is also dependent on the seasons. We, therefore, investigated seasonal and sunlight-dependent effects on DAT availability in early Parkinson's disease (PD) patients and healthy controls. METHODS: DAT single-photon emission computed tomography scans (n = 730) were gathered from the Parkinson's Progression Marker Initiative (PPMI) database. We used global horizontal irradiance (GHI) as proxy for sun exposure/month and assessed associations between striatal DAT availability and season (autumn/winter versus spring/summer), GHI and latitude of the PPMI site. RESULTS: In PD patients, DAT availability in the left caudate nucleus was higher in spring/summer (B [standard error (SE)] = 0.05 [0.02], P = 0.03) and positively associated with higher sun exposure (B [SE] = 0.59 [0.22] × 10-3 , P = 0.007). Latitude (in degrees north) of the PPMI site was negatively associated with DAT availability in both PD and healthy controls. CONCLUSION: Striatal DAT availability may be influenced by daylight exposure. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Enfermedad de Parkinson , Luz Solar , Humanos , Cuerpo Estriado/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Enfermedad de Parkinson/complicaciones , Tomografía Computarizada de Emisión de Fotón Único/métodos
6.
Brain Sci ; 13(6)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37371330

RESUMEN

INTRODUCTION: Physical exercise is receiving increasing interest as an augmentative non-pharmacological intervention in Parkinson's disease (PD). This pilot study primarily aimed to quantify individual response patterns of motor symptoms to alternating exercise modalities, along with non-motor functioning and blood biomarkers of neuroplasticity and neurodegeneration. MATERIALS & METHODS: People with PD performed high-intensity interval training (HIIT) and continuous aerobic exercise (CAE) using a crossover single-case experimental design. A repeated assessment of outcome measures was conducted. The trajectories of outcome measures were visualized in time series plots and interpreted relative to the minimal clinically important difference (MCID) and smallest detectable change (SDC) or as a change in the positive or negative direction using trend lines. RESULTS: Data of three participants were analyzed and engaging in physical exercise seemed beneficial for reducing motor symptoms. Participant 1 demonstrated improvement in motor function, independent of exercise modality; while for participant 2, such a clinically relevant (positive) change in motor function was only observed in response to CAE. Participant 3 showed improved motor function after HIIT, but no comparison could be made with CAE because of drop-out. Heterogeneous responses on secondary outcome measures were found, not only between exercise modalities but also among participants. CONCLUSION: Though this study underpins the positive impact of physical exercise in the management of PD, large variability in individual response patterns to the interventions among participants makes it difficult to identify clear exercise-induced adaptations in functioning and blood biomarkers. Further research is needed to overcome methodological challenges in measuring individual response patterns.

7.
Netw Neurosci ; 7(1): 299-321, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37339322

RESUMEN

Executive functioning (EF) is a higher order cognitive process that is thought to depend on a network organization facilitating integration across subnetworks, in the context of which the central role of the fronto-parietal network (FPN) has been described across imaging and neurophysiological modalities. However, the potentially complementary unimodal information on the relevance of the FPN for EF has not yet been integrated. We employ a multilayer framework to allow for integration of different modalities into one 'network of networks.' We used diffusion MRI, resting-state functional MRI, MEG, and neuropsychological data obtained from 33 healthy adults to construct modality-specific single-layer networks as well as a single multilayer network per participant. We computed single-layer and multilayer eigenvector centrality of the FPN as a measure of integration in this network and examined their associations with EF. We found that higher multilayer FPN centrality, but not single-layer FPN centrality, was related to better EF. We did not find a statistically significant change in explained variance in EF when using the multilayer approach as compared to the single-layer measures. Overall, our results show the importance of FPN integration for EF and underline the promise of the multilayer framework toward better understanding cognitive functioning.

8.
Artículo en Inglés | MEDLINE | ID: mdl-37121397

RESUMEN

BACKGROUND: Poor insight in obsessive-compulsive disorder (OCD) is associated with higher symptom severity, more comorbidities, and worse response to treatment. This study aimed to elucidate underlying mechanisms of poor insight in OCD by exploring its neurobiological correlates. METHODS: Using a symptom provocation task during functional magnetic resonance imaging, we compared brain activation of patients with poor insight (n = 19; 14 female, 5 male), good/fair insight (n = 63; 31 female, 32 male), and healthy control participants (n = 42; 22 female, 20 male) using a Bayesian region-of-interest and a general linear model whole-brain approach. Insight was assessed using the Overvalued Ideas Scale. RESULTS: Compared with patients with good/fair insight and healthy control participants, patients with OCD and poor insight showed widespread lower task-related activation in frontal areas (subgenual anterior cingulate cortex, ventromedial prefrontal cortex, dorsolateral prefrontal cortex, ventrolateral prefrontal cortex, supplementary motor area, precentral gyrus), parietal areas (posterior parietal cortex, precuneus), and the middle temporal gyrus and insula. Results were not driven by interindividual differences in OCD symptom severity, medication usage, age of disorder onset, or state distress levels. CONCLUSIONS: During symptom provocation, patients with OCD and poor insight show altered activation in brain circuits that are involved in emotional processing, sensory processing, and cognitive control. Future research should focus on longitudinal correlates of insight and/or use tasks that probe emotional and sensory processing and cognitive control.


Asunto(s)
Encéfalo , Trastorno Obsesivo Compulsivo , Humanos , Masculino , Femenino , Teorema de Bayes , Corteza Prefrontal/diagnóstico por imagen , Emociones/fisiología
9.
Neuropsychology ; 37(3): 284-300, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35786960

RESUMEN

OBJECTIVE: Cross-national work on neurocognitive testing has been characterized by inconsistent findings, suggesting the need for improved harmonization. Here, we describe a prospective harmonization approach in an ongoing global collaborative study. METHOD: Visuospatial N-Back, Tower of London (ToL), Stop Signal task (SST), Risk Aversion (RA), and Intertemporal Choice (ITC) tasks were administered to 221 individuals from Brazil, India, the Netherlands, South Africa, and the USA. Prospective harmonization methods were employed to ensure procedural similarity of task implementation and processing of derived task measures across sites. Generalized linear models tested for between-site differences controlling for sex, age, education, and socioeconomic status (SES). Associations with these covariates were also examined and tested for differences by site with site-by-covariate interactions. RESULTS: The Netherlands site performed more accurately on N-Back and ToL than the other sites, except for the USA site on the N-Back. The Netherlands and the USA sites performed faster than the other three sites during the go events in the SST. Finally, the Netherlands site also exhibited a higher tolerance for delay discounting than other sites on the ITC, and the India site showed more risk aversion than other sites on the RA task. However, effect size differences across sites on the five tasks were generally small (i.e., partial eta-squared < 0.05) after dropping the Netherlands (on ToL, N-Back, ITC, and SST tasks) and India (on the RA task). Across tasks, regardless of site, the N-Back (sex, age, education, and SES), ToL (sex, age, and SES), SST (age), and ITC (SES) showed associations with covariates. CONCLUSIONS: Four out of the five sites showed only small between-site differences for each task. Nevertheless, despite our extensive prospective harmonization steps, task score performance deviated from the other sites in the Netherlands site (on four tasks) and the India site (on one task). Because the procedural methods were standardized across sites, and our analyses were adjusted for covariates, the differences found in cognitive performance may indicate selection sampling bias due to unmeasured confounders. Future studies should follow similar cross-site prospective harmonization procedures when assessing neurocognition and consider measuring other possible confounding variables for additional statistical control. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Asunto(s)
Clase Social , Humanos , Estudios Prospectivos , Estudios Longitudinales , Escolaridad , Pruebas Neuropsicológicas
10.
Int J Methods Psychiatr Res ; 32(1): e1931, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35971639

RESUMEN

OBJECTIVES: We describe the harmonized MRI acquisition and quality assessment of an ongoing global OCD study, with the aim to translate representative, well-powered neuroimaging findings in neuropsychiatric research to worldwide populations. METHODS: We report on T1-weighted structural MRI, resting-state functional MRI, and multi-shell diffusion-weighted imaging of 140 healthy participants (28 per site), two traveling controls, and regular phantom scans. RESULTS: Human image quality measures (IQMs) and outcome measures showed smaller within-site variation than between-site variation. Outcome measures were less variable than IQMs, especially for the traveling controls. Phantom IQMs were stable regarding geometry, SNR, and mean diffusivity, while fMRI fluctuation was more variable between sites. CONCLUSIONS: Variation in IQMs persists, even for an a priori harmonized data acquisition protocol, but after pre-processing they have less of an impact on the outcome measures. Continuous monitoring IQMs per site is valuable to detect potential artifacts and outliers. The inclusion of both cases and healthy participants at each site remains mandatory.


Asunto(s)
Imagen por Resonancia Magnética , Trastorno Obsesivo Compulsivo , Humanos , Voluntarios Sanos , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Trastorno Obsesivo Compulsivo/diagnóstico por imagen , Encéfalo/diagnóstico por imagen
11.
Hum Brain Mapp ; 43(15): 4699-4709, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35735129

RESUMEN

Rich-club organization is key to efficient global neuronal signaling and integration of information. Alterations interfere with higher-order cognitive processes, and are common to several psychiatric and neurological conditions. A few studies examining the structural connectome in obsessive-compulsive disorder (OCD) suggest lower efficiency of information transfer across the brain. However, it remains unclear whether this is due to alterations in rich-club organization. In the current study, the structural connectome of 28 unmedicated OCD patients, 8 of their unaffected siblings and 28 healthy controls was reconstructed by means of diffusion-weighted imaging and probabilistic tractography. Topological and weighted measures of rich-club organization and connectivity were computed, alongside global and nodal measures of network integration and segregation. The relationship between clinical scores and network properties was explored. Compared to healthy controls, OCD patients displayed significantly lower topological and weighted rich-club organization, allocating a smaller fraction of all connection weights to the rich-club core. Global clustering coefficient, local efficiency, and clustering of nonrich club nodes were significantly higher in OCD patients. Significant three-group differences emerged, with siblings displaying highest and lowest values in different measures. No significant correlation with any clinical score was found. Our results suggest weaker structural connectivity between rich-club nodes in OCD patients, possibly resulting in lower network integration in favor of higher network segregation. We highlight the need of looking at network-based alterations in brain organization and function when investigating the neurobiological basis of this disorder, and stimulate further research into potential familial protective factors against the development of OCD.


Asunto(s)
Conectoma , Trastorno Obsesivo Compulsivo , Sustancia Blanca , Encéfalo/diagnóstico por imagen , Conectoma/métodos , Humanos , Vías Nerviosas/fisiología , Trastorno Obsesivo Compulsivo/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen
12.
Parkinsonism Relat Disord ; 96: 80-87, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35248830

RESUMEN

INTRODUCTION: Cognitive training (CT) has been proposed as a treatment option for cognitive impairment in Parkinson's disease (PD). We aimed to assess the efficacy of adaptive, computerized CT on cognitive function in PD. METHODS: In this double-blind, randomized controlled trial we enrolled PD patients that experienced substantial subjective cognitive complaints. Over a period of eight weeks, participants underwent 24 sessions of computerized multi-domain CT or an active control intervention for 45 min each (randomized 1:1). The primary outcome was the accuracy on the Tower of London task; secondary outcomes included effects on other neuropsychological outcomes and subjective cognitive complaints. Outcomes were assessed before and after training and at six-months follow-up, and analyzed with multivariate mixed-model analyses. RESULTS: The intention-to-treat population consisted of 136 participants (n = 68 vs. n = 68, age M: 62.9y, female: 39.7%). Multivariate mixed-model analyses showed no group difference on the Tower of London accuracy corrected for baseline performance (n = 130): B: -0.06, 95% CI: -0.27 to 0.15, p = 0.562. Participants in the CT group were on average 0.30 SD (i.e., 1.5 s) faster on difficulty load 4 of this task (secondary outcome): 95% CI: -0.55 to -0.06, p = 0.015. CT did not reduce subjective cognitive complaints. At follow-up, no group differences were found. CONCLUSIONS: This study shows no beneficial effect of eight-week computerized CT on the primary outcome (i.e., planning accuracy) and only minor improvements on secondary outcomes (i.e., processing speed) with limited clinical impact. Personalized or ecologically valid multi-modal intervention methods could be considered to achieve clinically meaningful and lasting effects.


Asunto(s)
Trastornos del Conocimiento , Disfunción Cognitiva , Enfermedad de Parkinson , Cognición , Trastornos del Conocimiento/complicaciones , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/terapia , Método Doble Ciego , Femenino , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/psicología , Enfermedad de Parkinson/terapia
13.
Neuroimage Clin ; 33: 102952, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35123203

RESUMEN

There is meta-analytic evidence for the efficacy of cognitive training (CT) in Parkinson's disease (PD). We performed a randomized controlled trial where we found small positive effects of CT on executive function and processing speed in individuals with PD (ntotal = 140). In this study, we assessed the effects of CT on brain network connectivity and topology in a subsample of the full study population (nmri = 86). Participants were randomized into an online multi-domain CT and an active control condition and performed 24 sessions of either intervention in eight weeks. Resting-state functional MRI scans were acquired in addition to extensive clinical and neuropsychological assessments pre- and post-intervention. In line with our preregistered analysis plan (osf.io/3st82), we computed connectivity between 'cognitive' resting-state networks and computed topological outcomes at the whole-brain and sub-network level. We assessed group differences after the intervention with mixed-model analyses adjusting for baseline performance and analyzed the association between network and cognitive performance changes with repeated measures correlation analyses. The final analysis sample consisted of 71 participants (n CT = 37). After intervention there were no group differences on between-network connectivity and network topological outcomes. No associations between neural network and neuropsychological performance change were found. CT increased segregated network topology in a small sub-sample of cognitively intact participants. Post-hoc nodal analyses showed post-intervention enhanced connectivity of both the dorsal anterior cingulate cortex and dorsolateral prefrontal cortex in the CT group. The results suggest no large-scale brain network effects of eight-week computerized CT, but rather localized connectivity changes of key regions in cognitive function, that potentially reflect the specific effects of the intervention.


Asunto(s)
Trastornos del Conocimiento , Enfermedad de Parkinson , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Cognición , Humanos , Imagen por Resonancia Magnética , Vías Nerviosas/diagnóstico por imagen , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/terapia
14.
Brain Struct Funct ; 227(3): 741-762, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35142909

RESUMEN

The brain is an extraordinarily complex system that facilitates the optimal integration of information from different regions to execute its functions. With the recent advances in technology, researchers can now collect enormous amounts of data from the brain using neuroimaging at different scales and from numerous modalities. With that comes the need for sophisticated tools for analysis. The field of network neuroscience has been trying to tackle these challenges, and graph theory has been one of its essential branches through the investigation of brain networks. Recently, topological data analysis has gained more attention as an alternative framework by providing a set of metrics that go beyond pairwise connections and offer improved robustness against noise. In this hands-on tutorial, our goal is to provide the computational tools to explore neuroimaging data using these frameworks and to facilitate their accessibility, data visualisation, and comprehension for newcomers to the field. We will start by giving a concise (and by no means complete) overview of the field to introduce the two frameworks and then explain how to compute both well-established and newer metrics on resting-state functional magnetic resonance imaging. We use an open-source language (Python) and provide an accompanying publicly available Jupyter Notebook that uses the 1000 Functional Connectomes Project dataset. Moreover, we would like to highlight one part of our notebook dedicated to the realistic visualisation of high order interactions in brain networks. This pipeline provides three-dimensional (3-D) plots of pairwise and higher-order interactions projected in a brain atlas, a new feature tailor-made for network neuroscience.


Asunto(s)
Conectoma , Encéfalo/diagnóstico por imagen , Conectoma/métodos , Imagen por Resonancia Magnética/métodos , Red Nerviosa/diagnóstico por imagen , Neuroimagen/métodos
15.
Hum Brain Mapp ; 43(1): 23-36, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-32154629

RESUMEN

Neuroimaging has played an important part in advancing our understanding of the neurobiology of obsessive-compulsive disorder (OCD). At the same time, neuroimaging studies of OCD have had notable limitations, including reliance on relatively small samples. International collaborative efforts to increase statistical power by combining samples from across sites have been bolstered by the ENIGMA consortium; this provides specific technical expertise for conducting multi-site analyses, as well as access to a collaborative community of neuroimaging scientists. In this article, we outline the background to, development of, and initial findings from ENIGMA's OCD working group, which currently consists of 47 samples from 34 institutes in 15 countries on 5 continents, with a total sample of 2,323 OCD patients and 2,325 healthy controls. Initial work has focused on studies of cortical thickness and subcortical volumes, structural connectivity, and brain lateralization in children, adolescents and adults with OCD, also including the study on the commonalities and distinctions across different neurodevelopment disorders. Additional work is ongoing, employing machine learning techniques. Findings to date have contributed to the development of neurobiological models of OCD, have provided an important model of global scientific collaboration, and have had a number of clinical implications. Importantly, our work has shed new light on questions about whether structural and functional alterations found in OCD reflect neurodevelopmental changes, effects of the disease process, or medication impacts. We conclude with a summary of ongoing work by ENIGMA-OCD, and a consideration of future directions for neuroimaging research on OCD within and beyond ENIGMA.


Asunto(s)
Neuroimagen , Trastorno Obsesivo Compulsivo , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Humanos , Aprendizaje Automático , Estudios Multicéntricos como Asunto , Trastorno Obsesivo Compulsivo/diagnóstico por imagen , Trastorno Obsesivo Compulsivo/patología
16.
J Am Acad Child Adolesc Psychiatry ; 61(2): 321-330, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34217835

RESUMEN

OBJECTIVE: Pediatric obsessive-compulsive disorder (OCD) and clinically relevant obsessive-compulsive symptoms in the general population are associated with increased thalamic volume. It is unknown whether this enlargement is explained by specific thalamic subregions. The relation between obsessive-compulsive symptoms and volume of thalamic subregions was investigated in a population-based sample of children. METHOD: Obsessive-compulsive symptoms were measured in children (9-12 years of age) from the Generation R Study using the Short Obsessive-Compulsive Disorder Screener (SOCS). Thalamic nuclei volumes were extracted from structural 3T magnetic resonance imaging scans using the ThalamicNuclei pipeline and regrouped into anterior, ventral, intralaminar/medial, lateral, and pulvinar subregions. Volumes were compared between children with symptoms above clinical cutoff (probable OCD cases, SOCS ≥ 6, n = 156) and matched children without symptoms (n = 156). Linear regression models were fitted to investigate the association between continuous SOCS score and subregional volume in the whole sample (N = 2500). RESULTS: Children with probable OCD had larger ventral nuclei compared with children without symptoms (d = 0.25, p = .025, false discovery rate adjusted p = .126). SOCS score showed a negative association with pulvinar volume when accounting for overall thalamic volume (ß = -0.057, p = .009, false discovery rate adjusted p = .09). However, these associations did not survive multiple testing correction. CONCLUSION: The results suggest that individual nuclei groups contribute in varying degrees to overall thalamic volume in children with probable OCD, although this did not survive multiple comparisons correction. Understanding the role of thalamic nuclei and their associated circuits in pediatric OCD could lead toward treatment strategies targeting these circuits.


Asunto(s)
Trastorno Obsesivo Compulsivo , Tálamo , Niño , Humanos , Imagen por Resonancia Magnética , Trastorno Obsesivo Compulsivo/diagnóstico por imagen , Trastorno Obsesivo Compulsivo/patología , Tálamo/diagnóstico por imagen , Tálamo/patología
17.
J Affect Disord ; 299: 344-352, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34920037

RESUMEN

BACKGROUND: The dorsal anterior cingulate cortex (dACC) plays an important role in the pathophysiology of obsessive-compulsive disorder (OCD) due to its role in error processing, cognitive control and emotion regulation. OCD patients have shown altered concentrations in neurometabolites in the dACC, particularly Glx (glutamate+glutamine) and tNAA (N-acetylaspartate+N-acetyl-aspartyl-glutamate). We investigated the immediate and prolonged effects of exposure and response prevention (ERP) on these neurometabolites. METHODS: Glx and tNAA concentrations were measured using magnetic resonance spectroscopy (1H-MRS) in 24 OCD patients and 23 healthy controls at baseline. Patients received concentrated ERP over four days. A subset was re-scanned after one week and three months. RESULTS: No Glx and tNAA abnormalities were observed in OCD patients compared to healthy controls before treatment or over time. Patients with childhood or adult onset differed in the change over time in tNAA (F(2,40) = 7.24, É³2p= 0.27, p = 0.004): concentrations increased between one week after treatment and follow-up in the childhood onset group (t(39) = -2.43, d = -0.86, p = 0.020), whereas tNAA concentrations decreased between baseline and follow-up in patients with an adult onset (t(42) = 2.78, d = 1.07, p = 0.008). In OCD patients with versus without comorbid mood disorders, lower Glx concentrations were detected at baseline (t(38) = -2.28, d = -1.00, p = 0.028). Glx increased after one week of treatment within OCD patients with comorbid mood disorders (t(30) = -3.09, d = -1.21, p = 0.004). LIMITATIONS: Our OCD sample size allowed the detection of moderate to large effect sizes only. CONCLUSION: ERP induced changes in neurometabolites in OCD seem to be dependent on mood disorder comorbidity and disease stage rather than OCD itself.


Asunto(s)
Terapia Implosiva , Trastorno Obsesivo Compulsivo , Niño , Ácido Glutámico , Glutamina , Giro del Cíngulo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Trastorno Obsesivo Compulsivo/terapia
19.
Neurosci Biobehav Rev ; 131: 466-478, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34587501

RESUMEN

The thalamus is a central brain structure crucially involved in cognitive, emotional, sensory, and motor functions and is often reported to be involved in the pathophysiology of neurological and psychiatric disorders. The functional subdivision of the thalamus warrants morphological investigation on the level of individual subnuclei. In addition to volumetric measures, the investigation of other morphological features may give additional insights into thalamic morphology. For instance, shape features offer a higher spatial resolution by revealing small, regional differences that are left undetected in volumetric analyses. In this review, we discuss the benefits and limitations of recent advances in neuroimaging techniques to investigate thalamic morphology in vivo, leading to our proposed methodology. This methodology consists of available pipelines for volume and shape analysis, focussing on the morphological features of volume, thickness, and surface area. We demonstrate this combined approach in a Parkinson's disease cohort to illustrate their complementarity. Considering our findings, we recommend a combined methodology as it allows for more sensitive investigation of thalamic morphology in clinical populations.


Asunto(s)
Enfermedad de Parkinson , Tálamo , Encéfalo , Humanos , Imagen por Resonancia Magnética/métodos , Neuroimagen , Tálamo/diagnóstico por imagen
20.
Neurotherapeutics ; 18(4): 2518-2528, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34409569

RESUMEN

Previous studies showed that cognitive training can improve cognitive performance in various neurodegenerative diseases but little is known about the effects of cognitive training on the brain. Here, we investigated the effects of our cognitive training paradigm, COGTIPS, on regional white matter microstructure and structural network topology. We previously showed that COGTIPS has small, positive effects on processing speed. A subsample of 79 PD patients (N = 40 cognitive training group, N = 39 active control group) underwent multi-shell diffusion-weighted imaging pre- and post-intervention. Our pre-registered analysis plan (osf.io/cht6g) entailed investigating white matter microstructural integrity (e.g., fractional anisotropy) in five tracts of interest, including the anterior thalamic radiation (ATR), whole-brain tract-based spatial statistics (TBSS), and the topology of the structural network. Relative to the active control condition, cognitive training had no effect on topology of the structural network or whole-brain TBSS. Cognitive training did lead to a reduction in fractional anisotropy in the ATR (B [SE]: - 0.32 [0.12], P = 0.01). This reduction was associated with faster responses on the Tower of London task (r = 0.42, P = 0.007), but this just fell short of our statistical threshold (P < 0.006). Post hoc "fixel-based" analyses showed that this was not due to changes in fiber density and cross section. This suggests that the observed effect in the ATR is due to training-induced alterations in neighboring fibers running through the same voxels, such as intra-striatal and thalamo-striatal fibers. These results indicate that 8 weeks of cognitive training does not alter network topology, but has subtle local effects on structural connectivity.


Asunto(s)
Enfermedad de Parkinson , Sustancia Blanca , Encéfalo/diagnóstico por imagen , Cognición , Imagen de Difusión Tensora/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/terapia , Sustancia Blanca/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...