Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 13(10)2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37892185

RESUMEN

The ubiquitin proteasome system (UPS) utilizes an orchestrated enzymatic cascade of E1, E2, and E3 ligases to add single or multiple ubiquitin-like molecules as post-translational modification (PTM) to proteins. Ubiquitination can alter protein functions and/or mark ubiquitinated proteins for proteasomal degradation but deubiquitinases (DUBs) can reverse protein ubiquitination. While the importance of DUBs as regulatory factors in the UPS is undisputed, many questions remain on DUB selectivity for protein targeting, their mechanism of action, and the impact of DUBs on the regulation of diverse biological processes. Furthermore, little is known about the expression and role of DUBs in tumors of the human central nervous system (CNS). In this comprehensive review, we have used publicly available transcriptional datasets to determine the gene expression profiles of 99 deubiquitinases (DUBs) from five major DUB families in seven primary pediatric and adult CNS tumor entities. Our analysis identified selected DUBs as potential new functional players and biomarkers with prognostic value in specific subtypes of primary CNS tumors. Collectively, our analysis highlights an emerging role for DUBs in regulating CNS tumor cell biology and offers a rationale for future therapeutic targeting of DUBs in CNS tumors.


Asunto(s)
Proteínas , Ubiquitina , Humanos , Niño , Ubiquitinación , Ubiquitina/metabolismo , Proteínas/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Sistema Nervioso Central/metabolismo
2.
Cancers (Basel) ; 15(13)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37444570

RESUMEN

The ubiquitin proteasome system regulates the activity of many short-lived proteins in cells [...].

3.
Cell Mol Neurobiol ; 43(4): 1425-1452, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35896929

RESUMEN

We have mined public genomic datasets to identify genes coding for components of the ubiquitin proteasome system (UPS) that may qualify as potential diagnostic and therapeutic targets in the three major glioma types, astrocytoma (AS), glioblastoma (GBM), and oligodendroglioma (ODG). In the Sun dataset of glioma (GEO ID: GSE4290), expression of the genes UBE2S and UBE2C, which encode ubiquitin conjugases important for cell-cycle progression, distinguished GBM from AS and ODG. KEGG analysis showed that among the ubiquitin E3 ligase genes differentially expressed, the Notch pathway was significantly over-represented, whereas among the E3 ligase adaptor genes the Hippo pathway was over-represented. We provide evidence that the UPS gene contributions to the Notch and Hippo pathway signatures are related to stem cell pathways and can distinguish GBM from AS and ODG. In the Sun dataset, AURKA and TPX2, two cell-cycle genes coding for E3 ligases, and the cell-cycle gene coding for the E3 adaptor CDC20 were upregulated in GBM. E3 ligase adaptor genes differentially expressed were also over-represented for the Hippo pathway and were able to distinguish classic, mesenchymal, and proneural subtypes of GBM. Also over-expressed in GBM were PSMB8 and PSMB9, genes encoding subunits of the immunoproteasome. Our transcriptome analysis provides a strong rationale for UPS members as attractive therapeutic targets for the development of more effective treatment strategies in malignant glioma. Ubiquitin proteasome system and glioblastoma: E1-ubiquitin-activating enzyme, E2-ubiquitin-conjugating enzyme, E3-ubiquitin ligase. Ubiquitinated substrates of E3 ligases may be degraded by the proteasome. Expression of genes for specific E2 conjugases, E3 ligases, and genes for proteasome subunits may serve as differential markers of subtypes of glioblastoma.


Asunto(s)
Glioblastoma , Glioma , Humanos , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Glioblastoma/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Enzimas Ubiquitina-Conjugadoras
4.
Int J Mol Sci ; 23(20)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36293188

RESUMEN

The ubiquitin proteasome system (UPS) is critically important for cellular homeostasis and affects virtually all key functions in normal and neoplastic cells. Currently, a comprehensive review of the role of the UPS in ependymoma (EPN) brain tumors is lacking but may provide valuable new information on cellular networks specific to different EPN subtypes and reveal future therapeutic targets. We have reviewed publicly available EPN gene transcription datasets encoding components of the UPS pathway. Reactome analysis of these data revealed genes and pathways that were able to distinguish different EPN subtypes with high significance. We identified differential transcription of several genes encoding ubiquitin E2 conjugases associated with EPN subtypes. The expression of the E2 conjugase genes UBE2C, UBE2S, and UBE2I was elevated in the ST_EPN_RELA subtype. The UBE2C and UBE2S enzymes are associated with the ubiquitin ligase anaphase promoting complex (APC/c), which regulates the degradation of substrates associated with cell cycle progression, whereas UBE2I is a Sumo-conjugating enzyme. Additionally, elevated in ST_EPN_RELA were genes for the E3 ligase and histone deacetylase HDAC4 and the F-box cullin ring ligase adaptor FBX031. Cluster analysis demonstrated several genes encoding E3 ligases and their substrate adaptors as EPN subtype specific genetic markers. The most significant Reactome Pathways associated with differentially expressed genes for E3 ligases and their adaptors included antigen presentation, neddylation, sumoylation, and the APC/c complex. Our analysis provides several UPS associated factors that may be attractive markers and future therapeutic targets for the subtype-specific treatment of EPN patients.


Asunto(s)
Neoplasias Encefálicas , Ependimoma , Humanos , Ubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Cullin/metabolismo , Marcadores Genéticos , gamma-Glutamil Hidrolasa/genética , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ependimoma/genética , Histona Desacetilasas/genética , Enzimas Ubiquitina-Conjugadoras/genética
5.
Cancers (Basel) ; 13(11)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071321

RESUMEN

In this article, we reviewed the transcription of genes coding for components of the ubiquitin proteasome pathway in publicly available datasets of epithelial ovarian cancer (EOC). KEGG analysis was used to identify the major pathways distinguishing EOC of low malignant potential (LMP) from invasive high-grade serous ovarian carcinomas (HGSOC), and to identify the components of the ubiquitin proteasome system that contributed to these pathways. We identified elevated transcription of several genes encoding ubiquitin conjugases associated with HGSOC. Fifty-eight genes coding for ubiquitin ligases and more than 100 genes encoding ubiquitin ligase adaptors that were differentially expressed between LMP and HGSOC were also identified. Many differentially expressed genes encoding E3 ligase adaptors were Cullin Ring Ligase (CRL) adaptors, and 64 of them belonged to the Cullin 4 DCX/DWD family of CRLs. The data suggest that CRLs play a role in HGSOC and that some of these proteins may be novel therapeutic targets. Differential expression of genes encoding deubiquitinases and proteasome subunits was also noted.

6.
Biochim Biophys Acta Mol Basis Dis ; 1866(10): 165839, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32445667

RESUMEN

The ubiquitin proteasome system regulates key cellular processes in normal and in cancer cells. Herein, we review published data on the role of ubiquitin ligases in the four major subgroups of medulloblastoma (MB). While conventional literature serves as an initial source of information on cellular pathways in MB, large publicly available datasets of gene expression can be used to add information not previously identified in the literature. By analysing the publicly available Cavalli dataset, we show that increased expression of ZNRF3 characterizes the WNT subgroup of MB. The ZNRF3 gene codes for an E3 ligase associated with WNT receptors. Loss of a copy of chromosome 6 in a subtype of the WNT group was associated with decreased expression of the gene encoding the E3 ligase RNF146. While the E3 ligase SMURF regulates SHH receptors, increased expression of the gene encoding the Cullin Ring E3 adaptor PPP2R2C was statistically a better genetic marker of the SHH group. Genes whose expression was statistically strongly related to Group 3 included the E3 ligase gene TRIM58, and the gene for the E3 ligase adaptor, PPP2R2B. Group 4 MB was associated with expression of genes encoding several E3 ligases and E3 ligase adaptors involved in ribosome biogenesis. Increased expression of the genes encoding the E3 ligase adaptors and transcription repressors ZBTB18 and ZBTB38 were also noted in subgroup 4. These data suggest that several E3 ligases and their adaptors should be investigated as therapeutic targets for subgroup specific MB brain tumors.


Asunto(s)
Marcadores Genéticos , Meduloblastoma/genética , Meduloblastoma/metabolismo , Transcriptoma , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Consenso , Bases de Datos Factuales , Regulación de la Expresión Génica , Humanos , Proteínas del Tejido Nervioso , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
7.
Cerebellum ; 18(3): 469-488, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30810905

RESUMEN

Using publically available datasets on gene expression in medulloblastoma (MB) subtypes, we selected genes for ubiquitin ligases and identified statistically those that best predicted each of the four major MB subgroups as separate disease entities. We identify a gene coding for an ubiquitin ligase, ZNRF3, whose overexpression alone can predict the WNT subgroup for 100% in the Pfister dataset. For the SHH subgroup, we identify a gene for a regulatory subunit of the protein phosphatase 2A (PP2A), PPP2R2C, as the major predictor among the E3 ligases genes. The ubiquitin and ubiquitin-like conjugation database (UUCD) lists PPP2R2C as coding for a Cullin Ring ubiquitin ligase adaptor. For group 3 MBs, the best ubiquitin ligase predictor was PPP2R2B, a gene which codes for another regulatory subunit of the PP2A holoenzyme. For group 4, the best E3 gene predictors were MID2, ZBTB18, and PPP2R2A, which codes for a third PP2A regulatory subunit. Heatmap analysis of the E3 gene data shows that expression of ten genes for ubiquitin ligases can be used to classify MBs into the four major consensus subgroups. This was illustrated by analysis of gene expression of ubiquitin ligases of the Pfister dataset and confirmed in the dataset of Cavalli. We conclude that genes for ubiquitin ligases can be used as genetic markers for MB subtypes and that the proteins coded for by these genes should be investigated as subtype specific therapeutic targets for MB.


Asunto(s)
Neoplasias Cerebelosas/genética , Meduloblastoma/genética , Ubiquitina-Proteína Ligasas/genética , Humanos , Transcriptoma
8.
J Neurosci ; 37(36): 8816-8829, 2017 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-28821666

RESUMEN

GABA is the key inhibitory neurotransmitter in the cortex but regulation of its synthesis during forebrain development is poorly understood. In the telencephalon, members of the distal-less (Dlx) homeobox gene family are expressed in, and regulate the development of, the basal ganglia primodia from which many GABAergic neurons originate and migrate to other forebrain regions. The Dlx1/Dlx2 double knock-out mice die at birth with abnormal cortical development, including loss of tangential migration of GABAergic inhibitory interneurons to the neocortex (Anderson et al., 1997a). We have discovered that specific promoter regulatory elements of glutamic acid decarboxylase isoforms (Gad1 and Gad2), which regulate GABA synthesis from the excitatory neurotransmitter glutamate, are direct transcriptional targets of both DLX1 and DLX2 homeoproteins in vivo Further gain- and loss-of-function studies in vitro and in vivo demonstrated that both DLX1 and DLX2 are necessary and sufficient for Gad gene expression. DLX1 and/or DLX2 activated the transcription of both Gad genes, and defects in Dlx function disrupted the differentiation of GABAergic interneurons with global reduction in GABA levels in the forebrains of the Dlx1/Dlx2 double knock-out mouse in vivo Identification of Gad genes as direct Dlx transcriptional targets is significant; it extends our understanding of Dlx gene function in the developing forebrain beyond the regulation of tangential interneuron migration to the differentiation of GABAergic interneurons arising from the basal telencephalon, and may help to unravel the pathogenesis of several developmental brain disorders.SIGNIFICANCE STATEMENT GABA is the major inhibitory neurotransmitter in the brain. We show that Dlx1/Dlx2 homeobox genes regulate GABA synthesis during forebrain development through direct activation of glutamic acid decarboxylase enzyme isoforms that convert glutamate to GABA. This discovery helps explain how Dlx mutations result in abnormal forebrain development, due to defective differentiation, in addition to the loss of tangential migration of GABAergic inhibitory interneurons to the neocortex. Reduced numbers or function of cortical GABAergic neurons may lead to hyperactivity states such as seizures (Cobos et al., 2005) or contribute to the pathogenesis of some autism spectrum disorders. GABAergic dysfunction in the basal ganglia could disrupt the learning and development of complex motor and cognitive behaviors (Rubenstein and Merzenich, 2003).


Asunto(s)
Prosencéfalo Basal/fisiología , Diferenciación Celular/fisiología , Neuronas GABAérgicas/fisiología , Glutamato Descarboxilasa/metabolismo , Proteínas de Homeodominio/metabolismo , Interneuronas/fisiología , Factores de Transcripción/metabolismo , Animales , Prosencéfalo Basal/citología , Movimiento Celular/fisiología , Células Cultivadas , Femenino , Neuronas GABAérgicas/citología , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Interneuronas/citología , Masculino , Ratones , Ratones Noqueados , Ácido gamma-Aminobutírico/metabolismo
9.
PLoS One ; 12(2): e0172441, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28212404

RESUMEN

INTRODUCTION: A recent study of the pineal gland of the rat found that the expression of more than 3000 genes showed significant day/night variations (The Hartley dataset). The investigators of this report made available a supplemental table in which they tabulated the expression of many genes that they did not discuss, including those coding for components of the ubiquitin proteasome system. Herein we identify the genes of the ubiquitin proteasome system whose expression were significantly influenced by environmental lighting in the Hartley dataset, those that were stimulated by DBcAMP in pineal glands in culture, and those that were stimulated by norepinephrine. PURPOSE: Using the Ubiquitin and Ubiquitin-like Conjugation Database (UUCA) we identified ubiquitin ligases and conjugases, and deubiquitinases in the Hartley dataset for the purpose of determining whether expression of genes of the ubiquitin proteasome pathway were significantly influenced by day/night variations and if these variations were regulated by autonomic innervation of the pineal gland from the superior cervical ganglia. METHODS: In the Hartley experiments pineal glands groups of rats sacrificed during the day and groups sacrificed during the night were examined for gene expression. Additional groups of rats had their superior cervical ganglia removed surgically or surgically decentralized and the pineal glands likewise examined for gene expression. RESULTS: The genes with at least a 2-fold day/night significant difference in expression included genes for 5 ubiquitin conjugating enzymes, genes for 58 ubiquitin E3 ligases and genes for 6 deubiquitinases. A 35-fold day/night difference was noted in the expression of the gene Sik1, which codes for a protein containing both an ubiquitin binding domain (UBD) and an ubiquitin-associated (UBA) domain. Most of the significant differences in these genes were prevented by surgical removal, or disconnection, of the superior cervical ganglia, and most were responsive, in vitro, to treatment with a cyclic AMP analog, and norepinephrine. All previously described 24-hour rhythms in the pineal require an intact sympathetic input from the superior cervical ganglia. CONCLUSIONS: The Hartley dataset thus provides evidence that the pineal gland is a highly useful model for studying adrenergically dependent mechanisms regulating variations in ubiquitin ligases, ubiquitin conjugases, and deubiquitinases, mechanisms that may be physiologically relevant not only in the pineal gland, but in all adrenergically innervated tissue.


Asunto(s)
Melatonina/metabolismo , Glándula Pineal/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Bucladesina/farmacología , Ritmo Circadiano/genética , Enzimas Desubicuitinizantes/genética , Enzimas Desubicuitinizantes/metabolismo , Regulación Enzimológica de la Expresión Génica , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Norepinefrina/metabolismo , Norepinefrina/farmacología , Glándula Pineal/efectos de los fármacos , Glándula Pineal/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas Sprague-Dawley , Receptores de Melatonina/metabolismo , Ganglio Cervical Superior/metabolismo , Ubiquitina-Proteína Ligasas/genética , Yodotironina Deyodinasa Tipo II
10.
Curr Mol Pharmacol ; 10(2): 115-140, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-26758948

RESUMEN

The mevalonate cascade is a key metabolic pathway that regulates a variety of cellular functions and is thereby implicated in the pathophysiology of most brain diseases, including neurodevelopmental and neurodegenerative disorders. Emerging lines of evidence suggest that statins and Rho GTPase inhibitors are efficacious and have advantageous properties in treatment of different pathologic conditions that are relevant to the central nervous system. Beyond the original role of statins in lowering cholesterol synthesis, they have anti-inflammatory, antioxidant and modulatory effects on signaling pathways. Additionally, Rho GTPase inhibitors and statins share the mevalonate pathway as a common target of their therapeutic actions. In this review, we discuss potential mechanisms through which these drugs, via their role in the mevalonate pathway, exert their neuroprotective effects in neurodegenerative and neurodevelopmental disorders.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Ácido Mevalónico/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Animales , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Línea Celular , Colesterol/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Redes y Vías Metabólicas/efectos de los fármacos , Ácido Mevalónico/farmacología , Tubo Neural/embriología , Tubo Neural/crecimiento & desarrollo , Tubo Neural/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas de Unión al GTP rho/antagonistas & inhibidores , Proteínas de Unión al GTP rho/metabolismo
11.
Cell Mol Life Sci ; 74(3): 449-467, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27592301

RESUMEN

Chromosome 17 abnormalities are often observed in medulloblastomas (MBs), particularly those classified in the consensus Groups 3 and 4. Herein we review MB signature genes associated with chromosome 17 and the relationship of these signature genes to the ubiquitin-proteasome system. While clinical investigators have not focused on the ubiquitin-proteasome system in relation to MB, a substantial amount of data on the topic has been hidden in the form of supplemental datasets of gene expression. A supplemental dataset associated with the Thompson classification of MBs shows that a subgroup of MB with 17p deletions is characterized by reduced expression of genes for several core particle subunits of the beta ring of the proteasome (ß1, ß4, ß5, ß7). One of these genes (PSMB6, the gene for the ß1 subunit) is located on chromosome 17, near the telomeric end of 17p. By comparison, in the WNT group of MBs only one core proteasome subunit, ß6, associated with loss of a gene (PSMB1) on chromosome 6, was down-regulated in this dataset. The MB subgroups with the worst prognosis have a significant association with chromosome 17 abnormalities and irregularities of APC/C cyclosome genes. We conclude that the expression of proteasome subunit genes and genes for ubiquitin ligases can contribute to prognostic classification of MBs. The therapeutic value of targeting proteasome subunits and ubiquitin ligases in the various subgroups of MB remains to be determined separately for each classification of MB.


Asunto(s)
Neoplasias Encefálicas/genética , Aberraciones Cromosómicas , Cromosomas Humanos Par 17/genética , Meduloblastoma/genética , Complejo de la Endopetidasa Proteasomal/genética , Ubiquitina/genética , Animales , Encéfalo/metabolismo , Encéfalo/patología , Neoplasias Encefálicas/patología , Cerebelo/metabolismo , Cerebelo/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Meduloblastoma/patología
12.
J Pineal Res ; 61(1): 41-51, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27121162

RESUMEN

The ubiquitin proteasome system has been proposed as a possible mechanism involved in the multiple actions of melatonin. COP1 (constitutive photomorphogenesis protein 1), a RING finger-type ubiquitin E3 ligase formerly identified in Arabidopsis, is a central switch for the transition from plant growth underground in darkness (etiolation) to growth under light exposure (photomorphogenesis). In darkness, COP1 binds to photomorphogenic transcription factors driving its degradation via the 26S proteasome; blue light, detected by cryptochromes, and red and far-red light detected by phytochromes, negatively regulate COP1. Homologues of plant COP1 containing all the structural features present in Arabidopsis as well as E3 ubiquitin ligase activity have been identified in mice and humans. Substrates for mammalian (m) COP1 include p53, AP-1 and c-Jun, p27(Kip1) , ETV1, MVP, 14-3-3σ, C/EBPα, MTA1, PEA3, ACC, TORC2 and FOXO1. This mCOP1 target suggests functions related to tumorigenesis, gluconeogenesis, and lipid metabolism. The role of mCOP1 in tumorigenesis (either as a tumor promoter or tumor suppressor), as well as in glucose metabolism (inhibition of gluconeogenesis) and lipid metabolism (inhibition of fatty acid synthesis), has been previously demonstrated. COP1, along with numerous other ubiquitin ligases, is regulated by the COP9 signalosome; this protein complex is associated with the oxidative stress sensor Keap1 and the deubiquitinase USP15. The objective of this review was to provide new information on the possible role of COP1 and COP9 as melatonin targets. The hypothesis is based on common functional aspects of melatonin and COP1 and COP9, including their dependence on light, regulation of the metabolism, and their control of tumor growth.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Melatonina/metabolismo , Complejos Multiproteicos/metabolismo , Péptido Hidrolasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Complejo del Señalosoma COP9 , Evolución Molecular , Humanos , Ratones , Complejo de la Endopetidasa Proteasomal/metabolismo
13.
Biochim Biophys Acta ; 1865(2): 176-83, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26899267

RESUMEN

There are numerous reports that melatonin inhibits the hypoxia-inducible factor, HIF-1α, and the HIF-1α-inducible gene, VEGF, both in vivo and in vitro. Through the inhibition of the HIF-1-VEGF pathway, melatonin reduces hypoxia-induced angiogenesis. Herein we discuss the interaction of melatonin with HIF-1α and HIF-1α-inducible genes in terms of what is currently known concerning the HIF-1α hypoxia response element (HIF-1α-HRE) pathway. The von Hippel-Lindau protein (VHL), also known as the VHL tumor suppressor, functions as part of a ubiquitin ligase complex which recognizes HIF-1α as a substrate. As such, VHL is part of the oxygen sensing mechanism of the cell. Under conditions of hypoxia, HIF-1α stimulates the transcription of numerous HIF-1α-induced genes, including EPO, VEGF, and PFKFB3; the latter is an enzyme which regulates glycolysis. Data from several studies show that ROS generated in mitochondria under conditions of hypoxia stimulate HIF-1α. Since melatonin acts as an antioxidant and reduces ROS, these data suggest that the antioxidant action of melatonin could account for reduced HIF-1, less VEGF, and reduced glycolysis in cancer cells (Warburg effect). A direct or indirect inhibitory action (via the reduction in ROS) of melatonin on proteasome activity would account for much of the published data.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Melatonina/farmacología , Oxígeno/análisis , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/fisiología , Animales , Antioxidantes/farmacología , Hipoxia de la Célula , Humanos , Mitocondrias/fisiología , Inhibidores de Proteasoma/farmacología , Especies Reactivas de Oxígeno/metabolismo , Ubiquitinación
14.
Life Sci ; 145: 152-60, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26706287

RESUMEN

Recently, investigators have shown that ubiquitin-proteasome-mediated protein degradation is critical in regulating the balance between bone formation and bone resorption. The major signal transduction pathways regulating bone formation are the RANK/NF-κB pathway and the Wnt/ß-catenin pathway. These signal transduction pathways regulate the activity of mature osteoblasts and osteoclasts. In addition, the Wnt/ß-catenin pathway is one of the major signaling pathways in the differentiation of osteoblasts. The ubiquitin ligases that are reported to be of major significance in regulating these pathways are the ubiquitin SCF(B-TrCP) ligase (which regulates activation of NF-κB via degradation of IkBα in osteoclasts, and regulates bone transcription factors via degradation of ß-catenin), the Keap-Cul3-Rbx1 ligase (which regulates degradation of IkB kinase, Nrf2, and the antiapoptotic factor Bcl-2), and Smurf1. Also of significance in regulating osteoclastogenesis is the deubiquitinase, CYLD (cylindramatosis protein), which facilitates the separation of NF-κB from IkBα. The degradation of CYLD is also under the regulation of SCF(B-TrCP). Proteasome inhibitors influence the activity of mature osteoblasts and osteoclasts, but also modulate the differentiation of precursor cells into osteoblasts. Preclinical studies show that melatonin also influences bone metabolism by stimulating bone growth and inhibiting osteoclast activity. These actions of melatonin could be interpreted as being mediated by the ubiquitin ligases SCF(B-TrCP) and Keap-Cul3-Rbx, or as an inhibitory effect on proteasomes. Clinical trials of the use of melatonin in the treatment of bone disease, including multiple myeloma, using both continuous and intermittent modes of administration, are warranted.


Asunto(s)
Resorción Ósea/metabolismo , Melatonina/metabolismo , Osteogénesis , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Animales , Enfermedades Óseas/metabolismo , Enfermedades Óseas/patología , Huesos/metabolismo , Huesos/patología , Ritmo Circadiano , Humanos , FN-kappa B/metabolismo , Hormona Paratiroidea/metabolismo , Ligando RANK/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Transducción de Señal
15.
Mol Brain ; 8(1): 64, 2015 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-26475605

RESUMEN

Cerebellar granule cells precursors are derived from the upper rhombic lip and migrate tangentially independent of glia along the subpial stream pathway to form the external germinal zone. Postnatally, granule cells migrate from the external germinal zone radially through the Purkinje cell layer, guided by Bergmann glia fibers, to the internal granular cell layer.Medulloblastomas (MBs) are the most common malignant childhood brain tumor. Many of these tumors develop from precursor cells of the embryonic rhombic lips. Four main groups of MB are recognized. The WNT group of MBs arise primarily from the lower rhombic lip and embryonic brainstem. The SHH group of MBs originate from cerebellar granule cell precursors in the external germinal zone of the embryonic cerebellum. The cellular origins of type 3 and type 4 MBs are not clear.Several ubiquitin ligases are revealed to be significant factors in development of the cerebellum as well as in the initiation and maintenance of MBs. Proteasome dysfunction at a critical stage of development may be a major factor in determining whether progenitor cells which are destined to become granule cells differentiate normally or become MB cells. We propose the hypothesis that proteasomal activity is essential to regulate the critical transition between proliferating granule cells and differentiated granule cells and that proteasome dysfunction may lead to MB. Proteasome dysfunction could also account for various mutations in MBs resulting from deficiencies in DNA checkpoint and repair mechanisms prior to development of MBs.Data showing a role for the ubiquitin ligases ß-TrCP, FBW7, Huwe1, and SKP2 in MBs suggest the possibility of a classification of MBs based on the expression (over expression or under expression) of specific ubiquitin ligases which function as oncogenes, tumor suppressors or cell cycle regulators.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Cerebelo/crecimiento & desarrollo , Cerebelo/metabolismo , Meduloblastoma/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Animales , Humanos , Modelos Biológicos
16.
Mol Cell Endocrinol ; 417: 1-9, 2015 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-26363225

RESUMEN

Melatonin inhibits human breast cancer cells stimulated with estrogen. This antiproliferative action depends on the presence of the estrogen receptor alpha (ERα) in the human MCF-7 cell line and is strictly dose-dependent. Since researchers concerned with melatonin and breast cancer have not considered the relevance of the ubiquitin-proteasome system to this research in this review we do so. The fact that the first breast cancer susceptibility gene to be identified, Brca1, functions as a ubiquitin ligase indicates that the ubiquitin-proteasome system has a role in regulating susceptibility to breast cancer. While mutations of this gene increase the incidence of breast cancer, the wild type gene suppresses estrogen-dependent transcriptional events relying on the estrogen receptor ERα. Three other ubiquitin ligases, SCF(Skp2), E6AP and APC, interact directly with ERα at the ERE and AP-1 promoters of ERα target genes. Melatonin, like proteasome inhibitors, decreases estrogen-induced gene transcription. Indeed, it has been reported that melatonin specifically inhibits estrogen-induced transcription mediated by ERα at the ERE and AP1 gene promoters. Herein, we present a model in which the inhibitory action of melatonin on MCF-7 cells is mediated, directly or indirectly, by the ubiquitin-proteasome system. In this model ERα, apoptotic proteins, and cell cycle proteins, all influenced by melatonin, are substrates of key ubiquitin ligases including SCF(Skp2), E6AP, and SCF(B-TrCP). Since dysfunction of the ubiquitin-proteasome system is a risk factor for breast cancer, this model provides a context in which to test the clinical potential, and limitations, of melatonin and proteasome inhibitors.


Asunto(s)
Neoplasias de la Mama/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Melatonina/farmacología , Transcripción Genética/efectos de los fármacos , Ubiquitina-Proteína Ligasas/genética , Proteína de la Poliposis Adenomatosa del Colon/genética , Proteína BRCA1/metabolismo , Proliferación Celular/efectos de los fármacos , Receptor alfa de Estrógeno/genética , Femenino , Humanos , Células MCF-7 , Proteínas Quinasas Asociadas a Fase-S/genética
17.
J Pineal Res ; 59(4): 403-19, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26272235

RESUMEN

Melatonin is remarkably functionally diverse with actions as a free radical scavenger and antioxidant, circadian rhythm regulator, anti-inflammatory and immunoregulating molecule, and as an oncostatic agent. We hypothesize that the initial and primary function of melatonin in photosynthetic cyanobacteria, which appeared on Earth 3.5-3.2 billion years ago, was as an antioxidant. The evolution of melatonin as an antioxidant by this organism was necessary as photosynthesis is associated with the generation of toxic-free radicals. The other secondary functions of melatonin came about much later in evolution. We also surmise that mitochondria and chloroplasts may be primary sites of melatonin synthesis in all eukaryotic cells that possess these organelles. This prediction is made on the basis that mitochondria and chloroplasts of eukaryotes developed from purple nonsulfur bacteria (which also produce melatonin) and cyanobacteria when they were engulfed by early eukaryotes. Thus, we speculate that the melatonin-synthesizing actions of the engulfed bacteria were retained when these organelles became mitochondria and chloroplasts, respectively. That mitochondria are likely sites of melatonin formation is supported by the observation that this organelle contains high levels of melatonin that are not impacted by blood melatonin concentrations. Melatonin has a remarkable array of means by which it thwarts oxidative damage. It, as well as its metabolites, is differentially effective in scavenging a variety of reactive oxygen and reactive nitrogen species. Moreover, melatonin and its metabolites modulate a large number of antioxidative and pro-oxidative enzymes, leading to a reduction in oxidative damage. The actions of melatonin on radical metabolizing/producing enzymes may be mediated by the Keap1-Nrf2-ARE pathway. Beyond its direct free radical scavenging and indirect antioxidant effects, melatonin has a variety of physiological and metabolic advantages that may enhance its ability to limit oxidative stress.


Asunto(s)
Antioxidantes/metabolismo , Antioxidantes/fisiología , Melatonina/metabolismo , Melatonina/fisiología , Oxígeno/metabolismo , Animales , Antioxidantes/farmacología , Cloroplastos/metabolismo , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/fisiología , Depuradores de Radicales Libres/metabolismo , Humanos , Melatonina/farmacología , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
18.
J Pineal Res ; 58(1): 1-11, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25369242

RESUMEN

The expression of 'clock' genes occurs in all tissues, but especially in the suprachiasmatic nuclei (SCN) of the hypothalamus, groups of neurons in the brain that regulate circadian rhythms. Melatonin is secreted by the pineal gland in a circadian manner as influenced by the SCN. There is also considerable evidence that melatonin, in turn, acts on the SCN directly influencing the circadian 'clock' mechanisms. The most direct route by which melatonin could reach the SCN would be via the cerebrospinal fluid of the third ventricle. Melatonin could also reach the pars tuberalis (PT) of the pituitary, another melatonin-sensitive tissue, via this route. The major 'clock' genes include the period genes, Per1 and Per2, the cryptochrome genes, Cry1 and Cry2, the clock (circadian locomotor output cycles kaput) gene, and the Bmal1 (aryl hydrocarbon receptor nuclear translocator-like) gene. Clock and Bmal1 heterodimers act on E-box components of the promoters of the Per and Cry genes to stimulate transcription. A negative feedback loop between the cryptochrome proteins and the nucleus allows the Cry and Per proteins to regulate their own transcription. A cycle of ubiquitination and deubiquitination controls the levels of CRY protein degraded by the proteasome and, hence, the amount of protein available for feedback. Thus, it provides a post-translational component to the circadian clock mechanism. BMAL1 also stimulates transcription of REV-ERBα and, in turn, is also partially regulated by negative feedback by REV-ERBα. In the 'black widow' model of transcription, proteasomes destroy transcription factors that are needed only for a particular period of time. In the model proposed herein, the interaction of melatonin and the proteasome is required to adjust the SCN clock to changes in the environmental photoperiod. In particular, we predict that melatonin inhibition of the proteasome interferes with negative feedback loops (CRY/PER and REV-ERBα) on Bmal1 transcription genes in both the SCN and PT. Melatonin inhibition of the proteasome would also tend to stabilize BMAL1 protein itself in the SCN, particularly at night when melatonin is naturally elevated. Melatonin inhibition of the proteasome could account for the effects of melatonin on circadian rhythms associated with molecular timing genes. The interaction of melatonin with the proteasome in the hypothalamus also provides a model for explaining the dramatic 'time of day' effect of melatonin injections on reproductive status of seasonal breeders. Finally, the model predicts that a proteasome inhibitor such as bortezomib would modify circadian rhythms in a manner similar to melatonin.


Asunto(s)
Ritmo Circadiano/fisiología , Regulación de la Expresión Génica/fisiología , Melatonina/metabolismo , Glándula Pineal/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Animales , Humanos
19.
Mol Cell Endocrinol ; 401: 213-20, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25528518

RESUMEN

Both melatonin and proteasome inhibitors upregulate antioxidant enzymes including superoxide dismutase (SOD), glutathione peroxidase (GP), hemoxygenase 1 (HO-1), and NADPH:quinone oxidoreductase (NQO1). Recent evidence suggests that the antioxidant action of both melatonin and proteasome inhibitors involves the Keap1-ARE (Keap1 antioxidant response element) pathway via the upregulation of Nrf2. Melatonin and proteasome inhibitors suppress the degradation of Nrf2 and also enhance its nuclear translocation. In the nucleus Nrf2, together with a cofactor, stimulates the transcription of antioxidant enzymes and detoxifying enzymes. The ligase (E3) complex (Keap1-Cul3-Rbx1) responsible for ubiquitinating Nrf2, prior to proteasomal degradation, also ubiquitinates IkB kinase and the antiapoptotic factor Bcl-2, and possibly additional proteins. In various systems, NF-κB, which is inhibited by IkBα, is downregulated by proteasome inhibitors as well as by melatonin. Similarly in leukemic cells, Bcl-2 is down-regulated by the proteasome inhibitor, bortezomib, and also by melatonin. Thus melatonin administration modulates the activity of three separate substrates of the Keap1-Cul3-Rbx1 ubiquitin ligase. These facts could be accounted for by the hypothesis that melatonin interacts with the ubiquitin ligase complex or, more likely, by the hypothesis that melatonin acts as a proteasome inhibitor. A recent study documented that melatonin acts as a proteasome inhibitor in cancer cells as well as inhibiting chymotrypsin-like activity in cell-free systems of these cells. Further studies, however, are needed to clarify the interaction of melatonin and the ubiquitin-proteasome system as they relate to oxidative stress.


Asunto(s)
Antioxidantes/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Melatonina/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Inhibidores de Proteasoma/farmacología , Animales , Núcleo Celular/metabolismo , Humanos , Proteína 1 Asociada A ECH Tipo Kelch , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba
20.
Life Sci ; 115(1-2): 8-14, 2014 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-25219883

RESUMEN

Proteasome inhibitors and melatonin are both intimately involved in the regulation of major signal transduction proteins including p53, cyclin p27, transcription factor NF-κB, apoptotic factors Bax and Bim, caspase 3, caspase 9, anti-apoptotic factor Bcl-2, TRAIL, NRF2 and transcription factor beta-catenin. The fact that these factors are shared targets of the proteasome inhibitor bortezomib and melatonin suggests the working hypothesis that melatonin is a proteasome inhibitor. Supporting this hypothesis is the fact that melatonin shares with bortezomib a selective pro-apoptotic action in cancer cells. Furthermore, both bortezomib and melatonin increase the sensitivity of human glioma cells to TRAIL-induced apoptosis. Direct evidence for melatonin inhibition of the proteasome was recently found in human renal cancer cells. We raise the issue whether melatonin should be investigated in combination with proteasome inhibitors to reduce toxicity, to reduce drug resistance, and to enhance efficacy. This may be particularly valid for hematological malignancies in which proteasome inhibitors have been shown to be useful. Further studies are necessary to determine whether the actions of melatonin on cellular signaling pathways are due to a direct inhibitory effect on the catalytic core of the proteasome, due to an inhibitory action on the regulatory particle of the proteasome, or due to an indirect effect of melatonin on phosphorylation of signal transducing factors.


Asunto(s)
Melatonina/metabolismo , Melatonina/farmacología , Neoplasias/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/metabolismo , Inhibidores de Proteasoma/farmacología , Animales , Apoptosis/efectos de los fármacos , Ácidos Borónicos/farmacología , Bortezomib , Caspasas/metabolismo , Humanos , FN-kappa B/metabolismo , Neoplasias/tratamiento farmacológico , Pirazinas/farmacología , Transducción de Señal/efectos de los fármacos , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...