Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Syst Biol ; 68(5): 767-780, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30796841

RESUMEN

Understanding the evolution of biodiversity on Earth is a central aim in biology. Currently, various disciplines of science contribute to unravel evolution at all levels of life, from individual organisms to species and higher ranks, using different approaches and specific terminologies. The search for common origin, traditionally called homology, is a connecting paradigm of all studies related to evolution. However, it is not always sufficiently taken into account that defining homology depends on the hierarchical level studied (organism, population, and species), which can cause confusion. Therefore, we propose a framework to define homologies making use of existing terms, which refer to homology in different fields, but restricting them to an unambiguous meaning and a particular hierarchical level. We propose to use the overarching term "homology" only when "morphological homology," "vertical gene transfer," and "phylogenetic homology" are confirmed. Consequently, neither phylogenetic nor morphological homology is equal to homology. This article is intended for readers with different research backgrounds. We challenge their traditional approaches, inviting them to consider the proposed framework and offering them a new perspective for their own research.


Asunto(s)
Evolución Biológica , Clasificación/métodos
2.
BMC Evol Biol ; 17(1): 89, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28335712

RESUMEN

BACKGROUND: Thousands of flowering plant species attract pollinators without offering rewards, but the evolution of this deceit is poorly understood. Rewardless flowers of the orchid Erycina pusilla have an enlarged median sepal and incised median petal ('lip') to attract oil-collecting bees. These bees also forage on similar looking but rewarding Malpighiaceae flowers that have five unequally sized petals and gland-carrying sepals. The lip of E. pusilla has a 'callus' that, together with winged 'stelidia', mimics these glands. Different hypotheses exist about the evolutionary origin of the median sepal, callus and stelidia of orchid flowers. RESULTS: The evolutionary origin of these organs was investigated using a combination of morphological, molecular and phylogenetic techniques to a developmental series of floral buds of E. pusilla. The vascular bundle of the median sepal indicates it is a first whorl organ but its convex epidermal cells reflect convergence of petaloid features. Expression of AGL6 EpMADS4 and APETALA3 EpMADS14 is low in the median sepal, possibly correlating with its petaloid appearance. A vascular bundle indicating second whorl derivation leads to the lip. AGL6 EpMADS5 and APETALA3 EpMADS13 are most highly expressed in lip and callus, consistent with current models for lip identity. Six vascular bundles, indicating a stamen-derived origin, lead to the callus, stelidia and stamen. AGAMOUS is not expressed in the callus, consistent with its sterilization. Out of three copies of AGAMOUS and four copies of SEPALLATA, EpMADS22 and EpMADS6 are most highly expressed in the stamen. Another copy of AGAMOUS, EpMADS20, and the single copy of SEEDSTICK, EpMADS23, are most highly expressed in the stelidia, suggesting EpMADS22 may be required for fertile stamens. CONCLUSIONS: The median sepal, callus and stelidia of E. pusilla appear to be derived from a sepal, a stamen that gained petal identity, and stamens, respectively. Duplications, diversifying selection and changes in spatial expression of different MADS-box genes shaped these organs, enabling the rewardless flowers of E. pusilla to mimic an unrelated rewarding flower for pollinator attraction. These genetic changes are not incorporated in current models and urge for a rethinking of the evolution of deceptive flowers.


Asunto(s)
Mimetismo Biológico , Flores/anatomía & histología , Orchidaceae/anatomía & histología , Orchidaceae/genética , Animales , Abejas/anatomía & histología , Evolución Biológica , Evolución Molecular , Flores/genética , Proteínas de Dominio MADS/genética , Orchidaceae/clasificación , Filogenia , Proteínas de Plantas/genética , Polinización
3.
Ann Bot ; 109(7): 1285-96, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22499855

RESUMEN

BACKGROUND AND AIMS: Balsaminaceae consist of two genera, the monospecific Hydrocera and its species-rich sister Impatiens. Although both genera are seemingly rather similar in overall appearance, they differ in ecology, distribution range, habitat preference and morphology. Because morphological support for the current molecular phylogenetic hypothesis of Impatiens is low, a developmental study is necessary in order to obtain better insights into the evolutionary history of the family. Therefore, the floral development of H. triflora and I. omeiana was investigated, representing the most early-diverged lineage of Impatiens, and the observations were compared with the literature. METHODS: Flowers at all developmental stages were examined using scanning electron microscopy and light microscopy. KEY RESULTS: In Hydrocera, two whorls of five free perianth primordia develop into a less zygomorphic perianth compared with its sister genus. The androecial cap originates from five individual stamen primordia. Post-genital fusion of the upper parts of the filaments result in a filament ring below the anthers. The anthers fuse forming connivent anther-like units. The gynoecium of Hydrocera is pentamerous; it is largely synascidiate in early development. Only then is a symplicate zone formed resulting in style and stigmas. In I. omeiana, the perianth is formed as in Hydrocera. Five individual stamen primordia develop into five stamens, of which the UPPER PART OF THE FILAMENTS CONVERGE WITH EACH OTHER. THE GYNOECIUM OF I. OMEIANA IS TETRAMEROUS; IT APPEARS ANNULAR IN EARLY DEVELOPMENT. CONCLUSIONS: Comparison of the present results with developmental data from the literature confirms the perianth morphocline hypothesis in which a congenital fusion of the parts of the perianth results in a shift from pentasepalous to trisepalous flowers. In addition, the development of the androecial cap and the gynoecium follows several distinct ontogenetic sequences within the family.


Asunto(s)
Evolución Biológica , Flores , Impatiens/fisiología , Impatiens/genética , Microscopía Electrónica de Rastreo
4.
Ann Bot ; 108(5): 847-65, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21852278

RESUMEN

BACKGROUND AND AIMS: Within Chenopodioideae, Atripliceae have been distinguished by two bracteoles enveloping the female flowers/fruits, whereas in other tribes flowers are described as ebracteolate with persistent perianth. Molecular phylogenetic hypotheses suggest 'bracteoles' to be homoplastic. The origin of the bracteoles was explained by successive inflorescence reductions. Flower reduction was used to explain sex determination. Therefore, floral ontogeny was studied to evaluate the nature of the bracteoles and sex determination in Atripliceae. METHODS: Inflorescences of species of Atriplex, Chenopodium, Dysphania and Spinacia oleracea were investigated using light microscopy and scanning electron microscopy. KEY RESULTS: The main axis of the inflorescence is indeterminate with elementary dichasia as lateral units. Flowers develop centripetally, with first the formation of a perianth primordium either from a ring primordium or from five individual tepal primordia fusing post-genitally. Subsequently, five stamen primordia originate, followed by the formation of an annular ovary primordium surrounding a central single ovule. Flowers are either initially hermaphroditic remaining bisexual and/or becoming functionally unisexual at later stages, or initially unisexual. In the studied species of Atriplex, female flowers are strictly female, except in A. hortensis. In Spinacia, female and male flowers are unisexual at all developmental stages. Female flowers of Atriplex and Spinacia are protected by two accrescent fused tepal lobes, whereas the other perianth members are absent. CONCLUSIONS: In Atriplex and Spinacia modified structures around female flowers are not bracteoles, but two opposite accrescent tepal lobes, parts of a perianth persistent on the fruit. Flowers can achieve sexuality through many different combinations; they are initially hermaphroditic, subsequently developing into bisexual or functionally unisexual flowers, with the exception of Spinacia and strictly female flowers in Atriplex, which are unisexual from the earliest developmental stages. There may be a relationship between the formation of an annular perianth primordium and flexibility in floral sex determination.


Asunto(s)
Chenopodiaceae/anatomía & histología , Chenopodiaceae/clasificación , Flores/anatomía & histología , Flores/crecimiento & desarrollo , Atriplex/anatomía & histología , Atriplex/ultraestructura , Chenopodiaceae/crecimiento & desarrollo , Chenopodiaceae/ultraestructura , Chenopodium/anatomía & histología , Chenopodium/ultraestructura , Flores/ultraestructura , Organismos Hermafroditas/crecimiento & desarrollo , México , Óvulo Vegetal/anatomía & histología , Óvulo Vegetal/ultraestructura , Análisis para Determinación del Sexo , Spinacia oleracea/anatomía & histología , Spinacia oleracea/ultraestructura
5.
Ann Bot ; 105(5): 677-88, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20237114

RESUMEN

BACKGROUND AND AIMS: The perianthless Piperales, i.e. Saururaceae and Piperaceae, have simple reduced flowers strikingly different from the other families of the order (e.g. Aristolochiaceae). Recent molecular phylogenies proved Verhuellia to be the first branch in Piperaceae, making it a promising subject to study the detailed structure and development of the flowers. Based on recently collected material, the first detailed study since 1872 was conducted with respect to morphology, anatomy and development of the inflorescence, pollen ultrastructure and fruit anatomy. METHODS: Original scanning electron microscopy (SEM), transmission electron microscopy (TEM) and light microscopy (LM) observations on Verhuellia lunaria were compared with those of Piperaceae, Saururaceae and fossils. KEY RESULTS: The inflorescence is an indeterminate spike with sessile flowers, each in the axil of a bract, developing in acropetal, helical succession. Flowers consist of two (occasionally three) stamens with basifixed tetrasporangiate anthers and latrorse dehiscence by a longitudinal slit. The gynoecium lacks a style but has 3-4 stigma branches and a single, basal orthotropous and unitegmic ovule. The fruit is a drupe with large multicellular epidermal protuberances. The pollen is very small, inaperturate and areolate, with hemispherical microechinate exine elements. CONCLUSIONS: Despite the superficial similarities with different genera of Piperaceae and Saururaceae, the segregate position of Verhuellia revealed by molecular phylogenetics is supported by morphological, developmental and anatomical data presented here. Unitegmic ovules and inaperturate pollen, which are synapomorphies for the genus Peperomia, are also present in Verhuellia.


Asunto(s)
Flores/anatomía & histología , Frutas/anatomía & histología , Magnoliopsida/anatomía & histología , Piperaceae/anatomía & histología , Piperaceae/clasificación , Polen/anatomía & histología , Flores/crecimiento & desarrollo , Flores/ultraestructura , Frutas/clasificación , Frutas/crecimiento & desarrollo , Frutas/ultraestructura , Magnoliopsida/clasificación , Magnoliopsida/crecimiento & desarrollo , Magnoliopsida/ultraestructura , Microscopía , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Piperaceae/crecimiento & desarrollo , Piperaceae/ultraestructura , Polen/crecimiento & desarrollo , Polen/ultraestructura
6.
Ann Bot ; 105(4): 555-71, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20197291

RESUMEN

BACKGROUND AND AIMS: In Cyperoideae, one of the two subfamilies in Cyperaceae, unresolved homology questions about spikelets remained. This was particularly the case in taxa with distichously organized spikelets and in Cariceae, a tribe with complex compound inflorescences comprising male (co)florescences and deciduous female single-flowered lateral spikelets. Using ontogenetic techniques, a wide range of taxa were investigated, including some controversial ones, in order to find morphological arguments to understand the nature of the spikelet in Cyperoideae. This paper presents a review of both new ontogenetic data and current knowledge, discussing a cyperoid, general, monopodial spikelet model. METHODS: Scanning electron microscopy and light microscopy were used to examine spikelets of 106 species from 33 cyperoid genera. RESULTS: Ontogenetic data presented allow a consistent cyperoid spikelet model to be defined. Scanning and light microscopic images in controversial taxa such as Schoenus nigricans, Cariceae and Cypereae are interpreted accordingly. CONCLUSIONS: Spikelets in all species studied consist of an indeterminate rachilla, and one to many spirally to distichously arranged glumes, each subtending a flower or empty. Lateral spikelets are subtended by a bract and have a spikelet prophyll. In distichously organized spikelets, combined concaulescence of the flowers and epicaulescence (a newly defined metatopic displacement) of the glumes has caused interpretational controversy in the past. In Cariceae, the male (co)florescences are terminal spikelets. Female single-flowered spikelets are positioned proximally on the rachis. To explain both this and the secondary spikelets in some Cypereae, the existence of an ontogenetic switch determining the development of a primordium into flower, or lateral axis is postulated.


Asunto(s)
Cyperaceae/anatomía & histología , Cyperaceae/crecimiento & desarrollo , Flores/anatomía & histología , Flores/crecimiento & desarrollo , Filogenia , Cyperaceae/genética , Cyperaceae/ultraestructura , Flores/genética , Flores/ultraestructura , Modelos Genéticos
7.
Ann Bot ; 102(4): 643-51, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18694878

RESUMEN

BACKGROUND AND AIMS: In spite of recent phylogenetic analyses for the Chenopodiaceae-Amaranthaceae complex, some morphological characters are not unambiguously interpreted, which raises homology questions. Therefore, ontogenetic investigations, emphasizing on 'bracteoles' in Atripliceae and flowers in Chenopodioideae, were conducted. This first paper presents original ontogenetic observations in Beta vulgaris, which was chosen as a reference species for further comparative investigation because of its unclarified phylogenetic position and its flowers with a (semi-)inferior ovary, whereas all other Chenopodiaceae-Amaranthaceae have hypogynous flowers. METHODS: Inflorescences and flowers were examined using scanning electron microscopy and light microscopy. KEY RESULTS: Floral development starts from an inflorescence unit primordium subtended by a lateral bract. This primordium develops into a determinate axis on which two opposite lateral flowers originate, each subtended by a bracteole. On a flower primordium, first five tepal primordia appear, followed by five opposite stamen primordia. Simultaneously, a convex floral apex appears, which differentiates into an annular ovary primordium with three stigma primordia, surrounding a central, single ovule. A floral tube, which raises the outer floral whorls, envelops the ovary, resulting in a semi-inferior ovary at mature stage. Similarly, a stamen tube is formed, raising the insertion points of the stamens, and forming a staminal ring, which does not contain stomata. During floral development, the calyces of the terminal flower and of one of the lateral flowers often fuse, forming a compound fruit structure. CONCLUSIONS: In Beta vulgaris, the inflorescence is compound, consisting of an indeterminate main axis with many elementary dichasia as inflorescence units, of which the terminal flower and one lateral flower fuse at a later stage. Floral parts develop starting from the outer whorl towards the gynoecium. Because of the formation of an epigynous hypanthium, the ovary becomes semi-inferior in the course of floral development.


Asunto(s)
Beta vulgaris/crecimiento & desarrollo , Flores/anatomía & histología , Beta vulgaris/anatomía & histología , Beta vulgaris/ultraestructura , Flores/crecimiento & desarrollo , Flores/ultraestructura , Microscopía Electrónica de Rastreo
8.
Ann Bot ; 100(6): 1165-73, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17881333

RESUMEN

BACKGROUND AND AIMS: Projections of cell wall material into the intercellular spaces between parenchymatic cells have been observed since the mid-19th century. Histochemical staining suggested that these intercellular protuberances are probably pectic in nature, but uncertainties about their origin, composition and biological function(s) have remained. METHODS: Using electron and light microscopy, including immunohistochemical methods, the structure and the presence of some major cell wall macromolecules in the intercellular pectic protuberances (IPPs) of the cortical parenchyma have been studied in a specimen of the Asplenium aethiopicum complex. KEY RESULTS: IPPs contained pectic homogalacturonan, but no evidence for pectic rhamnogalacturonan-I or xylogalacturonan epitopes was obtained. Arabinogalactan-proteins and xylan were not detected in cell walls, middle lamellae or IPPs of the cortical parenchyma, whereas xyloglucan was only found in its cell walls. Extensin (hydroxyproline-rich glycoproteins) LM1 and JIM11 and JIM20 epitopes were detected specifically in IPPs but not in their adjacent cell walls or middle lamellae. CONCLUSIONS: It is postulated that IPPs do not originate exclusively from the middle lamellae because extensins were only found in IPPs and not in surrounding cell walls, intercellular space linings or middle lamellae, and because IPPs and their adjacent cell walls are discontinuous.


Asunto(s)
Helechos/metabolismo , Pectinas/metabolismo , Pared Celular/química , Pared Celular/metabolismo , Pared Celular/ultraestructura , Helechos/citología , Helechos/ultraestructura , Inmunohistoquímica , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Pectinas/análisis , Pectinas/química , Peroxidasa/metabolismo
9.
Ann Bot ; 98(6): 1167-78, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17028295

RESUMEN

BACKGROUND AND AIMS: Australian Spermacoce species display various types of elaborate petals. Their precise morphology, ontogenetic origin, and function are hitherto unknown. The aim of the present paper is to unravel the development and nature of the diverse types of elaborate petals in Spermacoce through a floral ontogenetic study. METHODS: The floral ontogeny of six species characterized by different types of corolla appendages was studied by scanning electron microscopy and light microscopy. In order to elucidate the possible functions of the elaborate petals, field observations were conducted as well. KEY RESULTS: Scanning electronmicrographs show that full-grown petals of Spermacoce lignosa, S. phaeosperma and S. redacta bear appendages on their ventral side. Despite their different appearance at anthesis, the appendages develop very similarly in all three species. They are initiated at the same developmental stage and are first visible as two arcs of primordia converging from the upper margins of the petal towards its midvein and downwards. In S. brevidens, S. caudata and S. erectiloba, the full-grown petals have two long, concave protuberances, which develop from the tissue at both sides of the petal's mid-vein. In these three species, initiation of appendages on the ventral side of the petals is also observed, but they are hardly visible on the mature petals. The two types of elaborate petals tightly enclose the anthers, both in bud and during most of the flowering period. CONCLUSIONS: Among Australian Spermacoce species, two types of elaborate petals can be distinguished. The former hypothesis that the two types of elaborate petals are essentially homologous is here rejected. Field investigations point out that the elaborate petals might play a role in the pollination biology of the species.


Asunto(s)
Flores/anatomía & histología , Flores/ultraestructura , Rubiaceae/anatomía & histología , Rubiaceae/ultraestructura , Australia , Flores/citología , Rubiaceae/clasificación , Rubiaceae/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...