Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Bioelectron Med ; 10(1): 8, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38475923

RESUMEN

BACKGROUND: Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that causes persistent synovitis, bone damage, and progressive joint destruction. Neuroimmune modulation through electrical stimulation of the vagus nerve activates the inflammatory reflex and has been shown to inhibit the production and release of inflammatory cytokines and decrease clinical signs and symptoms in RA. The RESET-RA study was designed to determine the safety and efficacy of an active implantable device for treating RA. METHODS: The RESET-RA study is a randomized, double-blind, sham-controlled, multi-center, two-stage pivotal trial that enrolled patients with moderate-to-severe RA who were incomplete responders or intolerant to at least one biologic or targeted synthetic disease-modifying anti-rheumatic drug. A neuroimmune modulation device (SetPoint Medical, Valencia, CA) was implanted on the left cervical vagus nerve within the carotid sheath in all patients. Following post-surgical clearance, patients were randomly assigned (1:1) to active stimulation or non-active (control) stimulation for 1 min once per day. A predefined blinded interim analysis was performed in patients enrolled in the study's initial stage (Stage 1) that included demographics, enrollment rates, device implantation rates, and safety of the surgical procedure, device, and stimulation over 12 weeks of treatment. RESULTS: Sixty patients were implanted during Stage 1 of the study. All device implant procedures were completed without intraoperative complications, infections, or surgical revisions. No unanticipated adverse events were reported during the perioperative period and at the end of 12 weeks of follow-up. No study discontinuations were due to adverse events, and no serious adverse events were related to the device or stimulation. Two serious adverse events were related to the implantation procedure: vocal cord paresis and prolonged hoarseness. These were reported in two patients and are known complications of surgical implantation procedures with vagus nerve stimulation devices. The adverse event of vocal cord paresis resolved after vocal cord augmentation injections with filler and speech therapy. The prolonged hoarseness had improved with speech therapy, but mild hoarseness persists. CONCLUSIONS: The surgical procedures for implantation of the novel neuroimmune modulation device for the treatment of RA were safe, and the device and its use were well tolerated. TRIAL REGISTRATION: NCT04539964; August 31, 2020.

2.
Sensors (Basel) ; 23(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38067922

RESUMEN

Cervical degenerative disc diseases such as myelopathy and radiculopathy often require conventional treatments like artificial cervical disc replacement or anterior cervical discectomy and fusion (ACDF). When designing a medical device, like the stand-alone cage, there are many design inputs to consider. However, the precise biomechanics of the force between the vertebrae and implanted devices under certain conditions require further investigation. In this study, a new method was developed to evaluate the pressure between the vertebrae and implanted devices by embedding a sensor array into a 3D-printed C2-C3 cervical spine. The 3D-printed cervical spine model was subjected to a range of axial loads while under flexion, extension, bending and compression conditions. Cables were used for the application of a preload and a robotic arm was used to recreate the natural spine motions (flexion, extension, and bending). To verify and predict the total pressure between the vertebrae and the implanted devices, a 3D finite element (FE) numerical mathematical model was developed. A preload was represented by applying 22 N of force on each of the anterior tubercles for the C2 vertebra. The results of this study suggest that the sensor is useful in identifying static pressure. The pressure with the robot arm was verified from the FE results under all conditions. This study indicates that the sensor array has promising potential to reduce the trial and error with implants for various surgical procedures, including multi-level artificial cervical disk replacement and ACDF, which may help clinicians to reduce pain, suffering, and costly follow-up procedures.


Asunto(s)
Degeneración del Disco Intervertebral , Fusión Vertebral , Humanos , Fusión Vertebral/métodos , Vértebras Cervicales/cirugía , Degeneración del Disco Intervertebral/cirugía , Discectomía/métodos , Fenómenos Biomecánicos , Rango del Movimiento Articular , Impresión Tridimensional
3.
Front Bioeng Biotechnol ; 11: 1237702, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37790254

RESUMEN

The study aimed to investigate the impact of posterior element and ligament removal on the maximum von Mises stress, and maximum shear stress of the eight-layer annulus for treating stenosis at the L3-L4 and L4-L5 levels in the lumbar spine. Previous studies have indicated that laminectomy alone can result in segmental instability unless fusion is performed. However, no direct correlations have been established regarding the impact of posterior and ligament removal. To address this gap, four models were developed: Model 1 represented the intact L2-L5 model, while model 2 involved a unilateral laminotomy involving the removal of a section of the L4 inferior lamina and 50% of the ligament flavum between L4 and L5. Model 3 consisted of a complete laminectomy, which included the removal of the spinous process and lamina of L4, as well as the relevant connecting ligaments between L3-L4 and L4-L5 (ligament flavum, interspinous ligament, supraspinous ligament). In the fourth model, a complete laminectomy with 50% facetectomy was conducted. This involved the same removals as in model 3, along with a 50% removal of the inferior/superior facets of L4 and a 50% removal of the facet capsular ligaments between L3-L4 and L4-L5. The results indicated a significant change in the range of motion (ROM) at the L3-L4 and L4-L5 levels during flexion and torque situations, but no significant change during extension and bending simulation. The ROM increased by 10% from model 1 and 2 to model 3, and by 20% to model 4 during flexion simulation. The maximum shear stress and maximum von-Mises stress of the annulus and nucleus at the L3-L4 levels exhibited the greatest increase during flexion. In all eight layers of the annulus, there was an observed increase in both the maximum shear stress and maximum von-Mises stress from model 1&2 to model 3 and model 4, with the highest rate of increase noted in layers 7&8. These findings suggest that graded posterior element and ligament removal have a notable impact on stress distribution and range of motion in the lumbar spine, particularly during flexion.

4.
Cancers (Basel) ; 15(13)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37444398

RESUMEN

BACKGROUND: Genomic profiling cannot solely predict the complexity of how tumor cells behave in their in vivo microenvironment and their susceptibility to therapies. The aim of the study was to establish a functional drug prediction model utilizing patient-derived GBM tumor samples for in vitro testing of drug efficacy followed by in vivo validation to overcome the disadvantages of a strict pharmacogenomics approach. METHODS: High-throughput in vitro pharmacologic testing of patient-derived GBM tumors cultured as 3D organoids offered a cost-effective, clinically and phenotypically relevant model, inclusive of tumor plasticity and stroma. RNAseq analysis supplemented this 128-compound screening to predict more efficacious and patient-specific drug combinations with additional tumor stemness evaluated using flow cytometry. In vivo PDX mouse models rapidly validated (50 days) and determined mutational influence alongside of drug efficacy. We present a representative GBM case of three tumors resected at initial presentation, at first recurrence without any treatment, and at a second recurrence following radiation and chemotherapy, all from the same patient. RESULTS: Molecular and in vitro screening helped identify effective drug targets against several pathways as well as synergistic drug combinations of cobimetinib and vemurafenib for this patient, supported in part by in vivo tumor growth assessment. Each tumor iteration showed significantly varying stemness and drug resistance. CONCLUSIONS: Our integrative model utilizing molecular, in vitro, and in vivo approaches provides direct evidence of a patient's tumor response drifting with treatment and time, as demonstrated by dynamic changes in their tumor profile, which may affect how one would address that drift pharmacologically.

5.
Asian Spine J ; 17(5): 949-963, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37408489

RESUMEN

The cervical spine poses many complex challenges that require complex solutions. Anterior cervical discectomy and fusion (ACDF) has been one such technique often employed to address such issues. In order to address the problems with ACDF and assess the modifications that have been made to the technique over time, finite element analyses (FEA) have proven to be an effective tool. The variations of cervical spine FEA models that have been produced over the past couple of decades, particularly more recent representations of more complex geometries, have not yet been identified and characterized in any literature. Our objective was to present material property models and cervical spine models for various simulation purposes. The outlining and refinement of the FEA process will yield more reliable outcomes and provide a stable basis for the modeling protocols of the cervical spine.

6.
Int J Mol Sci ; 24(11)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37298091

RESUMEN

Adaptive plasticity of Breast Cancer stem cells (BCSCs) is strongly correlated with cancer progression and resistance, leading to a poor prognosis. In this study, we report the expression profile of several pioneer transcription factors of the Oct3/4 network associated with tumor initiation and metastasis. In the triple negative breast cancer cell line (MDA-MB-231) stably transfected with human Oct3/4-GFP, differentially expressed genes (DEGs) were identified using qPCR and microarray, and the resistance to paclitaxel was assessed using an MTS assay. The tumor-seeding potential in immunocompromised (NOD-SCID) mice and DEGs in the tumors were also assessed along with the intra-tumor (CD44+/CD24-) expression using flow cytometry. Unlike 2-D cultures, the Oct3/4-GFP expression was homogenous and stable in 3-D mammospheres developed from BCSCs. A total of 25 DEGs including Gata6, FoxA2, Sall4, Zic2, H2afJ, Stc1 and Bmi1 were identified in Oct3/4 activated cells coupled with a significantly increased resistance to paclitaxel. In mice, the higher Oct3/4 expression in tumors correlated with enhanced tumorigenic potential and aggressive growth, with metastatic lesions showing a >5-fold upregulation of DEGs compared to orthotopic tumors and variability in different tissues with the highest modulation in the brain. Serially re-implanting tumors in mice as a model of recurrence and metastasis highlighted the sustained upregulation of Sall4, c-Myc, Mmp1, Mmp9 and Dkk1 genes in metastatic lesions with a 2-fold higher expression of stem cell markers (CD44+/CD24-). Thus, Oct3/4 transcriptome may drive the differentiation and maintenance of BCSCs, promoting their tumorigenic potential, metastasis and resistance to drugs such as paclitaxel with tissue-specific heterogeneity.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Ratones , Humanos , Animales , Femenino , Neoplasias de la Mama/metabolismo , Regulación hacia Arriba , Ratones SCID , Ratones Endogámicos NOD , Neoplasias de la Mama Triple Negativas/patología , Paclitaxel/farmacología , Paclitaxel/metabolismo , Células Madre Neoplásicas/metabolismo , Línea Celular Tumoral
7.
Stem Cells Transl Med ; 12(4): 185-193, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-36929827

RESUMEN

BACKGROUND: Treatment options for patients with COVID-19-related acute respiratory distress syndrome (ARDS) are desperately needed. Allogeneic human umbilical cord derived mesenchymal stromal cells (hCT-MSCs) have potential therapeutic benefits in these critically ill patients, but feasibility and safety data are lacking. MATERIALS AND METHODS: In this phase I multisite study, 10 patients with COVID-19-related ARDS were treated with 3 daily intravenous infusions of hCT-MSCs (1 million cells/kg, maximum dose 100 million cells). The primary endpoint assessed safety. RESULTS: Ten patients (7 females, 3 males; median age 62 years (range 39-79)) were enrolled at 2 sites and received a total of 30 doses of study product. The average cell dose was 0.93 cells/kg (range 0.56-1.45 cells/kg and total dose range 55-117 million cells) with 5/30 (17%) of doses lower than intended dose. Average cell viability was 85% (range 63%-99%) with all but one meeting the >70% release criteria. There were no infusion-related reactions or study-related adverse events, 28 non-serious adverse events in 3 unique patients, and 2 serious adverse events in 2 unique patients, which were expected and unrelated to the study product. Five patients died: 3 by day 28 and 5 by day 90 of the study (median 27 days, range 7-76 days). All deaths were determined to be unrelated to the hCT-MSCs. CONCLUSION: We were able to collect relevant safety outcomes for the use of hCT-MSCs in patients with COVID-19-related ARDS. Future studies to explore their safety and efficacy are warranted.


Asunto(s)
COVID-19 , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Síndrome de Dificultad Respiratoria , Masculino , Femenino , Humanos , Adulto , Persona de Mediana Edad , Anciano , COVID-19/terapia , COVID-19/etiología , Estudios de Factibilidad , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/terapia
8.
Neuro Oncol ; 25(6): 1085-1097, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-36640127

RESUMEN

BACKGROUND: MDNA55 is an interleukin 4 receptor (IL4R)-targeting toxin in development for recurrent GBM, a universally fatal disease. IL4R is overexpressed in GBM as well as cells of the tumor microenvironment. High expression of IL4R is associated with poor clinical outcomes. METHODS: MDNA55-05 is an open-label, single-arm phase IIb study of MDNA55 in recurrent GBM (rGBM) patients with an aggressive form of GBM (de novo GBM, IDH wild-type, and nonresectable at recurrence) on their 1st or 2nd recurrence. MDNA55 was administered intratumorally as a single dose treatment (dose range of 18 to 240 ug) using convection-enhanced delivery (CED) with up to 4 stereo-tactically placed catheters. It was co-infused with a contrast agent (Gd-DTPA, Magnevist®) to assess distribution in and around the tumor margins. The flow rate of each catheter did not exceed 10µL/min to ensure that the infusion duration did not exceed 48 h. The primary endpoint was mOS, with secondary endpoints determining the effects of IL4R status on mOS and PFS. RESULTS: MDNA55 showed an acceptable safety profile at doses up to 240 µg. In all evaluable patients (n = 44) mOS was 11.64 months (80% one-sided CI 8.62, 15.02) and OS-12 was 46%. A subgroup (n = 32) consisting of IL4R High and IL4R Low patients treated with high-dose MDNA55 (>180 ug) showed the best benefit with mOS of 15 months, OS-12 of 55%. Based on mRANO criteria, tumor control was observed in 81% (26/32), including those patients who exhibited pseudo-progression (15/26). CONCLUSIONS: MDNA55 demonstrated tumor control and promising survival and may benefit rGBM patients when treated at high-dose irrespective of IL4R expression level.Trial Registration: Clinicaltrials.gov NCT02858895.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Receptores de Interleucina-4/uso terapéutico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/patología , Microambiente Tumoral
9.
Eur Spine J ; 32(3): 957-968, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36708398

RESUMEN

PURPOSE: Various factors have been examined in relation to cage subsidence risk, including cage material, cage geometry, bone mineral density, device type, surgical level, bone graft, and patient age. The present study aims to compare and synthesize the literature of both clinical and biomechanical studies to evaluate and present the factors associated with cage subsidence. METHODS: A comprehensive search of the literature from January 2003 to December 2021 was conducted using the PubMed and ScienceDirect databases by following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Following the screening for inclusion and exclusion criteria, a total of 49 clinical studies were included. Correlations between clinical and biomechanical studies are also discussed. RESULTS: Patients treated with the cage and plate combination had a lower subsidence rate than patients with the stand-alone cage. Overall, Polyetheretherketone material was shown to have a lower subsidence rate than titanium and other materials. The subsidence rate was also higher when the surgery was performed at levels C5-C7 than at levels C2-C5. No significant correlation was found between age and cage subsidence clinically. CONCLUSIONS: Cage subsidence increases the stress on the anterior fixation system and may cause biomechanical instability. Severe cage subsidence decreases the Cobb angle and intervertebral height, which may cause destabilization of the implant system, such as screw/plate loosening or breakage of the screw/plate. Various factors have been shown to influence the risk of cage subsidence. Examining clinical research alongside biomechanical studies offers a more comprehensive understanding of the subject.


Asunto(s)
Discectomía , Polietilenglicoles , Humanos , Discectomía/efectos adversos , Cetonas , Placas Óseas , Tornillos Óseos
10.
Bioengineering (Basel) ; 11(1)2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38247901

RESUMEN

Over the past few decades, there has been a growing popularity in utilizing finite element analysis to study the spine. However, most current studies tend to use one specimen for their models. This research aimed to validate multiple finite element models by comparing them with data from in vivo experiments and other existing finite element studies. Additionally, this study sought to analyze the data based on the gender and age of the specimens. For this study, eight lumbar spine (L2-L5) finite element models were developed. These models were then subjected to finite element analysis to simulate the six fundamental motions. CT scans were obtained from a total of eight individuals, four males and four females, ranging in age from forty-four (44) to seventy-three (73) years old. The CT scans were preprocessed and used to construct finite element models that accurately emulated the motions of flexion, extension, lateral bending, and axial rotation. Preloads and moments were applied to the models to replicate physiological loading conditions. This study focused on analyzing various parameters such as vertebral rotation, facet forces, and intradiscal pressure in all loading directions. The obtained data were then compared with the results of other finite element analyses and in vivo experimental measurements found in the existing literature to ensure their validity. This study successfully validated the intervertebral rotation, intradiscal pressure, and facet force results by comparing them with previous research findings. Notably, this study concluded that gender did not have a significant impact on the results. However, the results did highlight the importance of age as a critical variable when modeling the lumbar spine.

11.
J Cell Physiol ; 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36409648

RESUMEN

The role of Aß plaques and neurofibrillary tangles in Alzheimer's disease (AD) pathogenesis have recently come into question due to failure of many pharmaceutical agents targeting these deposits and detection of these misfolded proteins in normal human brains. Therefore, we investigated correlations between microglial activation and toll like receptor 4 (TLR4) and Lck/Yes novel tyrosine (LYN) kinase signaling in an AD mouse model. In this study, we used 5-6-month-old 5XFAD and wild type (WT) male and female mice. Immunohistochemistry (IHC) and flow cytometry (FC) were performed on their brains. Cognitive performance was assessed with the Barnes-Maze. IHC showed more Ab aggregation in microglia of female 5XFAD mice compared to their male counterparts. Increased co-localization of microglial TLR4 and LYN was also observed in AD more than WT and females more than males. IHC also suggests microglial phagocytosis of neurons in AD mice, which is supported by FC data. Our FC data also support the involvement of disease associated microglia (DAMs) in this process based on cytokine secretion. Cognitive assessment by the Barnes maze showed 5XFAD females performed worse than males. In this study, we investigated the relationship between microglial TLR4 and LYN kinase in 5XFAD male and females. Our data reveals a correlation between microglial TLR4 and LYN co-localization and AD pathogenesis, more in females than males. Targeting microglial TLR4 and Lyn in DAMs may offer new therapeutic opportunities in the treatment of AD.

12.
Neurocrit Care ; 37(3): 761-769, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35778649

RESUMEN

BACKGROUND: Toll-like receptor 4 (TLR4) activation causes excessive production of proinflammatory mediators and an increased expression of costimulatory molecules that leads to neuroinflammation after subarachnoid hemorrhage (SAH). Although TLR4-mediated inflammatory pathways have long been studied in neuroinflammation, the specific glia implicated in initiation and propagation of neuroinflammation in SAH have not been well elucidated. In this study, we investigated the involvement of glial TLR4 including microglia and astrocytes in brain damage and poor neurological outcome. METHODS: In this study, global TLR4 knockout, cell-specific TLR4 knockout, and floxxed control male and female mice were used. The mice were injected with 60 µl autologous blood near the mesencephalon to induce SAH; animals were euthanized on postoperative day 7 for immunohistochemistry of glia and apoptotic cells. Microglial morphology was evaluated by using immunofluorescence density quantification to determine correlations between morphology and neuroinflammation. Microglial depletion was accomplished with the intracerebroventricular administration of clodronate liposomes. Cognitive function was assessed with Barnes maze. RESULTS: On postoperative day 7 after SAH induction, neuronal apoptosis was markedly reduced in the clodronate liposome group compared with phosphate-buffered saline control liposomes, and cognitive performance in the clodronate group was improved, as well. Differences in microglial activation, assessed by morphometric analysis, and neuronal apoptosis were significantly greater in wildtype knockouts compared with cell-specific and global TLR4 knockouts. The mice lacking TLR4 on astrocytes and neurons showed no differences compared with wildtype mice on any end points. CONCLUSIONS: Our data suggest that microglial depletion with the intracerebroventricular administration of clodronate can improve the cognitive function in an SAH mouse model, and TLR4 is critical for microglial activation and neuronal injury. Only microglial TLR4 is necessary for brain damage and poor cognitive outcome rather than astrocyte or neuronal TLR4. Thus, microglial TLR4 could be a potent therapeutic target to treat SAH-associated neuronal injury and protect against cognitive dysfunction.


Asunto(s)
Lesiones Encefálicas , Disfunción Cognitiva , Hemorragia Subaracnoidea , Femenino , Masculino , Ratones , Animales , Microglía/metabolismo , Receptor Toll-Like 4/metabolismo , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/metabolismo , Ácido Clodrónico/metabolismo , Liposomas/metabolismo , Ratones Endogámicos C57BL , Neuronas/metabolismo , Lesiones Encefálicas/etiología , Modelos Animales de Enfermedad , Disfunción Cognitiva/etiología
13.
J Cell Physiol ; 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35822939

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disease that is responsible for about one-third of dementia cases worldwide. It is believed that AD is initiated with the deposition of Ab plaques in the brain. Genetic studies have shown that a high number of AD risk genes are expressed by microglia, the resident macrophages of brain. Common mode of action by microglia cells is neuroinflammation and phagocytosis. Moreover, it has been discovered that inflammatory marker levels are increased in AD patients. Recent studies advocate that neuroinflammation plays a major role in AD progression. Microglia have different activation profiles depending on the region of brain and stimuli. In different activation, profile microglia can generate either pro-inflammatory or anti-inflammatory responses. Microglia defend brain cells from pathogens and respond to injuries; also, microglia can lead to neuronal death along the way. In this review, we will bring the different roles played by microglia and microglia-related genes in the progression of AD.

14.
Asian Spine J ; 16(5): 615-624, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35263829

RESUMEN

STUDY DESIGN: This study compares four cervical endplate removal procedures, validated by finite element models. PURPOSE: To characterize the effect of biomechanical strength and increased contact area on the maximum von Mises stress, migration, and subsidence between the cancellous bone, endplate, and implanted cage. OVERVIEW OF LITERATURE: Anterior cervical discectomy and fusion (ACDF) has been widely used for treating patients with degenerative spondylosis. However, no direct correlations have been drawn that incorporate the impact of the contact area between the cage and the vertebra/endplate. METHODS: Model 1 (M1) was an intact C2C6 model with a 0.5 mm endplate. In model 2 (M2), a cage was implanted after removal of the C4-C5 and C5-C6 discs with preservation of the osseous endplate. In model 3 (M3), 1 mm of the osseous endplate was removed at the upper endplate. Model 4 (M4) resembles M3, except that 3 mm of the osseous endplate was removed. RESULTS: The range of motion (ROM) at C2C6 in the M2-M4 models was reduced by at least 9º compared to the M1 model. The von Mises stress results in the C2C3 and C3C4 interbody discs were significantly smaller in the M1 model and slightly increased in the M2-M3 and M3-M4 models. Migration and subsidence decreased from the M2-M3 model, whereas further endplate removal increased the migration and subsidence as shown in the transition from M3 to M4. CONCLUSIONS: The M3 model had the least subsidence and migration. The ROM was higher in the M3 model than the M2 and M4 models. Endplate preparation created small stress differences in the healthy intervertebral discs above the ACDF site. A 1 mm embedding depth created the best balance of mechanical strength and contact area, resulting in the most favorable stability of the construct.

15.
World Neurosurg ; 163: e43-e52, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35176523

RESUMEN

BACKGROUND: The limitations of anterior cervical discectomy and fusion (ACDF) are related to mechanical failure of the construct after recurring subsidence and migration. In the present study, we evaluated the effect of the maximum rotation of variable angle screws on the range of motion (ROM), cage migration, and subsidence. METHODS: Five finite element models were developed from a C2-C7 cervical spine model. The first model was an intact C2-C7 spine model, and the second model was an altered C2-C7 model with C4-C6 cage insertion and a 2-level static plate. The other three models were altered C2-C7 models with the same C4-C6 cage insertion and a 2-level dynamic plate. RESULTS: The ROM of C4-C6 in the static plate model was reduced by ∼14° from the intact model but only reduced by ∼9° in the dynamic plate models. The maximum migration and subsidence at the cage-endplate interface in the dynamic plate models were lower than those in the static plate model for all moments. The von Mises stress of the C3-C4 and C6-C7 discs in the dynamic plate models was lower than that in the static plate model. CONCLUSIONS: Our results indicate that dynamic plating has promising potential (greater ROM and lower von Mises stress of discs) for stabilization in multilevel anterior cervical discectomy and fusion than static plating, although both dynamic and static plates showed lower ROM than the intact model. A lower screw rotational angle resulted in superior biomechanical performance (lower incidence of migration and subsidence) compared with a higher rotational angle in multilevel applications, regardless of loading.


Asunto(s)
Discectomía , Fusión Vertebral , Fenómenos Biomecánicos , Vértebras Cervicales/diagnóstico por imagen , Vértebras Cervicales/cirugía , Discectomía/métodos , Análisis de Elementos Finitos , Humanos , Rango del Movimiento Articular , Fusión Vertebral/métodos
16.
J Neurosurg Sci ; 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34342203

RESUMEN

Glioblastoma multiforme (GBM) is a lethal brain tumor characterized by developmental hierarchical phenotypic heterogeneity, therapy resistance and recurrent growth. Neural stem cells (NSCs) from human central nervous system (CNS), and glioblastoma stem cells from patient-derived GBM (pdGSC) samples and cultured in both 2D well-plate and 3D monoclonal neurosphere culture system (pdMNCS). The pdMNCS model shows promise to establish a relevant 3D-tumor environment that maintains GBM cells in the stem cell phase within suspended neurospheres. Utilizing the pdMNCS, we examined GBM cell-lines for a wide spectrum of developmental cancer stem cell markers, including the early blastocyst inner-cell mass (ICM)-specific Nanog, Oct3/4,B, and CD133. We observed that MNCS epigenotype is recapitulated using gliomasphere-derived cells. CD133, the marker of GSC is robustly expressed in 3D-gliomaspheres and localized within the plasma membrane compartment. Conversely, gliomasphere cultures grown in conventional 2D culture quickly lost CD133 expression, indicating its variable expression is dependent on cell-culture conditions. Critically, this experiment demonstrates incomplete differentiation of cytoskeleton microtubules and intermediate filaments (IFs) of patient derived cells, similar to commercially available GBM cell lines. Subsequently, in order to determine whether Oct3/4 it was necessary for CD133 expression and cancer stemness, we transfected 2D and 3D culture with siRNA against Oct3/4 and found a significant reduction in gliomasphere formation. These results suggest that expression of Oct3/4,Aand CD133 suppress differentiation of GSCs.

17.
Expert Rev Med Devices ; 18(9): 865-873, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34319823

RESUMEN

INTRODUCTION: Hydrocephalus is a neurological disorder caused by excessive accumulation of the cerebrospinal fluid (CSF) in the ventricles of the brain. It can be treated by diverting the extra fluid to different parts of the body using a device called a shunt. This paper reviews different shunt devices that are used for this purpose. AREAS COVERED: Shunts have high failure rates either due to infection or mechanical failure, therefore there is still ongoing work to address these two main handicaps. They require additional devices for performance assessment. Here, the paper also reviews different approaches for assessing shunt limitations. Moreover, future prospects are also discussed. EXPERT OPINION: This study shows that shunt devices still remain an important treatment option for hydrocephalus. However, further efforts are required to design more advanced shunts, to eliminate high failure rates in clinical use. Sophisticated sensor systems that can accurately detect and regulate changes in CSF drainage to optimize drainage for individual needs. Moreover, shunt infection problem is still present despite recent improvements such as antibiotic impregnated catheters.


Asunto(s)
Derivaciones del Líquido Cefalorraquídeo , Hidrocefalia , Antibacterianos/uso terapéutico , Catéteres , Humanos , Hidrocefalia/tratamiento farmacológico , Hidrocefalia/cirugía , Prótesis e Implantes
18.
World Neurosurg ; 152: 61-70, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34062294

RESUMEN

The management of spine tumors is multimodal and personalized to each individual patient. Patients often require radiation therapy after surgical fixation. Although titanium implants are used most commonly, they produce significant artifact, leading to decreased confidence in target-volume coverage and normal tissue sparing. Carbon-based materials have been found to have minimal effects on dose perturbation in postoperative radiation therapy and have shown biostability and biocompatibility that are comparable to titanium implants. Using the PubMed and Web of Sciences databases, we conducted a systematic review of carbon-based screw and rod fixation systems in the treatment of spinal tumors. We reviewed clinical studies regarding safety of spine fixation with carbon fiber-reinforced (CFR) implants and biomechanical studies, as well as radiation and dosimetric studies. The radiolucency of CFR-polyether ether ketone implants has the potential to benefit patients with spine tumor. Clinical studies have shown no increase in complications with implementation of CFR-polyether ether ketone implants, and these devices seem to have sufficient stiffness and pullout strength. However, further trials are necessary to determine if there is a clinically significant impact on local tumor control.


Asunto(s)
Prótesis e Implantes , Fusión Vertebral/instrumentación , Neoplasias de la Columna Vertebral/cirugía , Benzofenonas , Fenómenos Biomecánicos , Fibra de Carbono , Humanos , Polímeros
19.
Clin Cancer Res ; 27(14): 3916-3925, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33863808

RESUMEN

PURPOSE: The current study compared the standard response assessment in neuro-oncology (RANO), immunotherapy RANO (iRANO), and modified RANO (mRANO) criteria as well as quantified the association between progression-free (PFS) and overall survival (OS) in an immunotherapy trial in recurrent glioblastoma (rGBM). PATIENTS AND METHODS: A total of 47 patients with rGBM were enrolled in a prospective phase II convection-enhanced delivery of an IL4R-targeted immunotoxin (MDNA55-05, NCT02858895). Bidirectional tumor measurements were created by local sites and centrally by an independent radiologic faculty, then standard RANO, iRANO, and mRANO criteria were applied. RESULTS: A total of 41 of 47 patients (mean age 56 ± 11.7) were evaluable for response. PFS was significantly shorter using standard RANO compared with iRANO (log-rank, P < 0.0001; HR = 0.3) and mRANO (P < 0.0001; HR = 0.3). In patients who died and had confirmed progression on standard RANO, no correlation was observed between PFS and OS (local, P = 0.47; central, P = 0.34). Using iRANO, a weak association was observed between confirmed PFS and OS via local site measurements (P = 0.017), but not central measurements (P = 0.18). A total of 24 of 41 patients (59%) were censored using iRANO and because they lacked confirmation of progression 3 months after initial progression. A strong correlation was observed between mRANO PFS and OS for both local (R2 = 0.66, P < 0.0001) and centrally determined reads (R2 = 0.57, P = 0.0007). CONCLUSIONS: No correlation between radiographic PFS and OS was observed for standard RANO or iRANO, but a correlation was observed between PFS and OS using the mRANO criteria. Also, the iRANO criteria was difficult to implement due to need to confirm progression 3 months after initial progression, censoring more than half the patients.


Asunto(s)
Glioblastoma/terapia , Inmunoterapia/métodos , Inmunotoxinas/farmacología , Subunidad alfa del Receptor de Interleucina-4/antagonistas & inhibidores , Recurrencia Local de Neoplasia/terapia , Adulto , Anciano , Supervivencia sin Enfermedad , Femenino , Glioblastoma/mortalidad , Humanos , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/mortalidad , Neoplasias del Sistema Nervioso/tratamiento farmacológico , Estudios Prospectivos , Tasa de Supervivencia , Resultado del Tratamiento
20.
Spine J ; 21(5): 874-882, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33460810

RESUMEN

BACKGROUND CONTEXT: Anterior cervical discectomy and fusion (ACDF) is widely used to treat patients with spinal disorders, where the cage is a critical component to achieve satisfactory fusion results. However, it is still not clear whether a cage with screws or without screws will be the best choice for long-term fusion as the micromotion (sliding distance) and subsidence (penetration) of the cage still take place repeatedly. PURPOSE: This study aims to examine the effect of cage-screws on the biomechanical characteristics of the human spine, implanted cage, and associate hardware by comparing the micromotion and subsidence. STUDY DESIGN: A finite element (FE) analysis study. METHODS: A FE model of a C3-C5 cervical spine with ACDF was developed. The spinal segment was modeled with the removal of the anterior longitudinal ligament (ALL), posterior longitudinal ligament (PLL), and discectomy was then implanted with a cage-screw system. Three models were analyzed: the first was the original spine (S1 model), the second, S2, was implanted with cages and anterior plating, and the third, S3, was implanted with a cage-screw system in addition to the anterior plate. All investigations were under 1 N•m in flexion, extension, lateral bending, and axial rotation situations. RESULTS: Finite element analysis (FEA) demonstrated that range of motion (ROM) at C3-C4 in the S2 model was significantly reduced more than that in the S3 model, while the ROM at both C4-C5 in the S3 model was reduced more than that in the S2 model in all simulations. The ROM at C3-C5 in the S1 model was reduced by over 5° in the S2 and S3 models in all loading conditions. The micromotion and subsidence at all contacts of C3-C5 in the S3 model were lower than that in the S2 model in all flexion, extension, bending, and axial simulations. The subsidence and micromotion could be seen in the barrier area of the S2 model, while they occurred near the edge of the screw in the S3 model. CONCLUSIONS: These results showed that the cage-screw and anterior plating combination has promising potential to reduce the risk of micromotion and subsidence of implanted cages in two or more level ACDFs. CLINICAL SIGNIFICANCE: The use of double segmental fixation with cage-screw anterior plating combination constructs may increase the stiffness of the construct and reduce the incidence of clinical and radiographic pseudarthrosis following multilevel ACDF, which in turn, could decrease the need for revision surgeries or supplemental posterior fixation.


Asunto(s)
Fusión Vertebral , Fenómenos Biomecánicos , Tornillos Óseos , Vértebras Cervicales/diagnóstico por imagen , Vértebras Cervicales/cirugía , Discectomía , Análisis de Elementos Finitos , Humanos , Rango del Movimiento Articular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...