Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Elife ; 1: e00109, 2012 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-23240085

RESUMEN

The molecular underpinnings of synaptic vesicle fusion for fast neurotransmitter release are still unclear. Here, we used a single vesicle-vesicle system with reconstituted SNARE and synaptotagmin-1 proteoliposomes to decipher the temporal sequence of membrane states upon Ca(2+)-injection at 250-500 µM on a 100-ms timescale. Furthermore, detailed membrane morphologies were imaged with cryo-electron microscopy before and after Ca(2+)-injection. We discovered a heterogeneous network of immediate and delayed fusion pathways. Remarkably, all instances of Ca(2+)-triggered immediate fusion started from a membrane-membrane point-contact and proceeded to complete fusion without discernible hemifusion intermediates. In contrast, pathways that involved a stable hemifusion diaphragm only resulted in fusion after many seconds, if at all. When complexin was included, the Ca(2+)-triggered fusion network shifted towards the immediate pathway, effectively synchronizing fusion, especially at lower Ca(2+)-concentration. Synaptic proteins may have evolved to select this immediate pathway out of a heterogeneous network of possible membrane fusion pathways.DOI:http://dx.doi.org/10.7554/eLife.00109.001.


Asunto(s)
Calcio/metabolismo , Fusión de Membrana , Proteolípidos/metabolismo , Proteína 25 Asociada a Sinaptosomas/metabolismo , Sinaptotagmina I/metabolismo , Potenciales de Acción , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Transporte Biológico , Calcio/farmacología , Expresión Génica , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteolípidos/ultraestructura , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transmisión Sináptica , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestructura , Proteína 25 Asociada a Sinaptosomas/genética , Sinaptotagmina I/genética , Sintaxina 1/genética , Sintaxina 1/metabolismo , Factores de Tiempo , Proteína 2 de Membrana Asociada a Vesículas/genética , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
3.
Biochemistry ; 50(46): 9998-10012, 2011 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-21928778

RESUMEN

Synaptotagmin 1 (Syt1) is a Ca(2+) sensor for SNARE-mediated, Ca(2+)-triggered synaptic vesicle fusion in neurons. It is composed of luminal, transmembrane, linker, and two Ca(2+)-binding (C2) domains. Here we describe expression and purification of full-length mammalian Syt1 in insect cells along with an extensive biochemical characterization of the purified protein. The expressed and purified protein is properly folded and has increased α-helical content compared to the C2AB fragment alone. Post-translational modifications of Syt1 were analyzed by mass spectrometry, revealing the same modifications of Syt1 that were previously described for Syt1 purified from brain extract or mammalian cell lines, along with a novel modification of Syt1, tyrosine nitration. A lipid binding screen with both full-length Syt1 and the C2AB fragments of Syt1 and Syt3 isoforms revealed new Syt1-lipid interactions. These results suggest a conserved lipid binding mechanism in which Ca(2+)-independent interactions are mediated via a lysine rich region of the C2B domain while Ca(2+)-dependent interactions are mediated via the Ca(2+)-binding loops.


Asunto(s)
Metabolismo de los Lípidos , Procesamiento Proteico-Postraduccional , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Clonación Molecular , Expresión Génica , Glicosilación , Insectos/citología , Modelos Moleculares , Datos de Secuencia Molecular , Fosforilación , Unión Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Ratas , Alineación de Secuencia , Sinaptotagmina I/química , Sinaptotagmina I/aislamiento & purificación
4.
Proc Natl Acad Sci U S A ; 108(29): E304-13, 2011 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-21705659

RESUMEN

Understanding the molecular principles of synaptic vesicle fusion is a long-sought goal. It requires the development of a synthetic system that allows manipulations and observations not possible in vivo. Here, we report an in vitro system with reconstituted synaptic proteins that meets the long-sought goal to produce fast content release in the millisecond time regime upon Ca(2+) triggering. Our system simultaneously monitors both content and lipid exchange, and it starts from stable interacting pairs of donor and acceptor vesicles, mimicking the readily releasable pool of synaptic vesicles prior to an action potential. It differentiates between single-vesicle interaction, hemifusion, and complete fusion, the latter mimicking quantized neurotransmitter release upon exocytosis of synaptic vesicles. Prior to Ca(2+) injection, the system is in a state in which spontaneous fusion events between donor and acceptor vesicles are rare. Upon Ca(2+) injection, a rapid burst of complete fusion events emerges, followed by a biphasic decay. The present study focuses on neuronal SNAREs, the Ca(2+) sensor synaptotagmin 1, and the modulator complexin. However, other synaptic proteins could be added and their function examined. Ca(2+) triggering is cooperative, requiring the presence of synaptotagmin, whereas SNAREs alone do not produce a fast fusion burst. Manipulations of the system mimic effects observed in vivo. These results also show that neuronal SNAREs alone do not efficiently produce complete fusion, that the combination of SNAREs with synaptotagmin lowers the activation barriers to full fusion, and that complexin enhances this kinetic control.


Asunto(s)
Exocitosis/fisiología , Modelos Biológicos , Proteínas del Tejido Nervioso/metabolismo , Neurotransmisores/metabolismo , Proteínas SNARE/metabolismo , Vesículas Sinápticas/metabolismo , Sinaptotagmina I/metabolismo , Animales , Calcio/metabolismo , Línea Celular , Escherichia coli , Fluorescencia , Procesamiento de Imagen Asistido por Computador , Técnicas In Vitro , Lípidos , Proteínas del Tejido Nervioso/aislamiento & purificación , Ratas , Proteínas SNARE/aislamiento & purificación , Spodoptera , Vesículas Sinápticas/fisiología , Sinaptotagmina I/aislamiento & purificación
5.
J Struct Biol ; 173(3): 497-505, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20837146

RESUMEN

Single molecule fluorescence energy transfer experiments enable investigations of macromolecular conformation and folding by the introduction of fluorescent dyes at specific sites in the macromolecule. Multiple such experiments can be performed with different labeling site combinations in order to map complex conformational changes or interactions between multiple molecules. Distances that are derived from such experiments can be used for determination of the fluorophore positions by triangulation. When combined with a known structure of the macromolecule(s) to which the fluorophores are attached, a three-dimensional model of the system can be determined. However, care has to be taken to properly derive distance from fluorescence energy transfer efficiency and to recognize the systematic or random errors for this relationship. Here we review the experimental and computational methods used for three-dimensional modeling based on single molecule fluorescence resonance transfer, and describe recent progress in pushing the limits of this approach to macromolecular complexes.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Modelos Moleculares , Conformación Molecular , Simulación por Computador , Colorantes Fluorescentes/química , Procesamiento de Imagen Asistido por Computador , Sustancias Macromoleculares/química
6.
Lab Chip ; 10(19): 2566-73, 2010 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-20623041

RESUMEN

Nerve growth factor (NGF) signaling begins at the nerve terminal, where it binds and activates membrane receptors and subsequently carries the cell-survival signal to the cell body through the axon. A recent study revealed that the majority of endosomes contain a single NGF molecule, which makes single-molecule imaging an essential tool for NGF studies. Despite being an increasingly popular technique, single-molecule imaging in live cells is often limited by background fluorescence. Here, we employed a microfluidic culture platform to achieve background reduction for single-molecule imaging in live neurons. Microfluidic devices guide the growth of neurons and allow separately controlled microenvironment for cell bodies or axon termini. Designs of microfluidic devices were optimized and a three-compartment device successfully achieved direct observation of axonal transport of single NGF when quantum dot labeled NGF (Qdot-NGF) was applied only to the distal-axon compartment while imaging was carried out exclusively in the cell-body compartment. Qdot-NGF was shown to move exclusively toward the cell body with a characteristic stop-and-go pattern of movements. Measurements at various temperatures show that the rate of NGF retrograde transport decreased exponentially over the range of 36-14 degrees C. A 10 degrees C decrease in temperature resulted in a threefold decrease in the rate of NGF retrograde transport. Our successful measurements of NGF transport suggest that the microfluidic device can serve as a unique platform for single-molecule imaging of molecular processes in neurons.


Asunto(s)
Axones/metabolismo , Axones/ultraestructura , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas de Sonda Molecular/instrumentación , Factor de Crecimiento Nervioso/metabolismo , Transporte Biológico Activo/fisiología , Diseño de Equipo , Análisis de Falla de Equipo , Humanos
7.
Nat Struct Mol Biol ; 17(3): 325-31, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20173762

RESUMEN

In neurons, SNAREs, synaptotagmin and other factors catalyze Ca(2+)-triggered fusion of vesicles with the plasma membrane. The molecular mechanism of this process, especially the interaction between synaptotagmin and SNAREs, remains an enigma. Here we characterized this interaction by single-molecule fluorescence microscopy and crystallography. The two rigid Ca(2+)-binding domains of synaptotagmin 3 (Syt3) undergo large relative motions in solution. Interaction with SNARE complex amplifies a particular state of the two domains that is further enhanced by Ca(2+). This state is represented by the first SNARE-induced Ca(2+)-bound crystal structure of a synaptotagmin fragment containing both domains. The arrangement of the Ca(2+)-binding loops of this structure of Syt3 matches that of SNARE-bound Syt1, suggesting a conserved feature of synaptotagmins. The loops resemble the membrane-interacting loops of certain viral fusion proteins in the postfusion state, suggesting unexpected similarities between both fusion systems.


Asunto(s)
Calcio/metabolismo , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Sinaptotagmina I/química , Sinaptotagmina I/metabolismo , Animales , Cristalografía por Rayos X , Transferencia Resonante de Energía de Fluorescencia , Modelos Biológicos , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína/genética , Estructura Terciaria de Proteína/fisiología , Ratas , Proteínas SNARE/genética , Sinaptotagmina I/genética
8.
Nat Struct Mol Biol ; 17(3): 318-24, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20173763

RESUMEN

Synchronous neurotransmission is triggered when Ca(2+) binds to synaptotagmin 1 (Syt1), a synaptic-vesicle protein that interacts with SNAREs and membranes. We used single-molecule fluorescence resonance energy transfer (FRET) between synaptotagmin's two C2 domains to determine that their conformation consists of multiple states with occasional transitions, consistent with domains in random relative motion. SNARE binding results in narrower intrasynaptotagmin FRET distributions and less frequent transitions between states. We obtained an experimentally determined model of the elusive Syt1-SNARE complex using a multibody docking approach with 34 FRET-derived distances as restraints. The Ca(2+)-binding loops point away from the SNARE complex, so they may interact with the same membrane. The loop arrangement is similar to that of the crystal structure of SNARE-induced Ca(2+)-bound Syt3, suggesting a common mechanism by which the interaction between synaptotagmins and SNAREs aids in Ca(2+)-triggered fusion.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Sinaptotagmina I/química , Sinaptotagmina I/metabolismo , Animales , Calcio/metabolismo , Cromatografía de Afinidad , Cromatografía en Gel , Cromatografía por Intercambio Iónico , Unión Proteica , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas SNARE/genética , Sinaptotagmina I/genética
9.
Biophys J ; 95(1): 435-50, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18339737

RESUMEN

Previously, investigations using single-fluorescent-molecule tracking at frame rates of up to 65 Hz, showed that the transmembrane MHC class II protein and its GPI-anchored modified form expressed in CHO cells undergo simple Brownian diffusion, without any influence of actin depolymerization with cytochalasin D. These results are at apparent variance with the view that GPI-anchored proteins stay with cholesterol-enriched raft domains, as well as with the observation that both lipids and transmembrane proteins undergo short-term confined diffusion within a compartment and long-term hop diffusion between compartments. Here, this apparent discrepancy has been resolved by reexamining the same paradigm, by using both high-speed single-particle tracking (50 kHz) and single fluorescent-molecule tracking (30 Hz). Both molecules exhibited rapid hop diffusion between 40-nm compartments, with an average dwell time of 1-3 ms in each compartment. Cytochalasin D hardly affected the hop diffusion, consistent with previous observations, whereas latrunculin A increased the compartment sizes with concomitant decreases of the hop rates, which led to an approximately 50% increase in the median macroscopic diffusion coefficient. These results indicate that the actin-based membrane skeleton influences the diffusion of both transmembrane and GPI-anchored proteins.


Asunto(s)
Glicosilfosfatidilinositoles/química , Antígenos de Histocompatibilidad Clase II/química , Microscopía Fluorescente/métodos , Técnicas de Sonda Molecular , Animales , Células CHO , Cricetinae , Cricetulus , Difusión , Glicosilfosfatidilinositoles/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo
10.
J Biol Chem ; 283(2): 1113-9, 2008 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-17956869

RESUMEN

SNARE proteins form a complex that leads to membrane fusion between vesicles, organelles, and plasma membrane in all eukaryotic cells. We report the 1.7A resolution structure of the SNARE complex that mediates exocytosis at the plasma membrane in the yeast Saccharomyces cerevisiae. Similar to its neuronal and endosomal homologues, the S. cerevisiae SNARE complex forms a parallel four-helix bundle in the center of which is an ionic layer. The S. cerevisiae SNARE complex exhibits increased helix bending near the ionic layer, contains water-filled cavities in the complex core, and exhibits reduced thermal stability relative to mammalian SNARE complexes. Mutagenesis experiments suggest that the water-filled cavities contribute to the lower stability of the S. cerevisiae complex.


Asunto(s)
Membrana Celular/fisiología , Proteínas R-SNARE/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/fisiología , Animales , Sitios de Unión , Cristalografía por Rayos X , Endosomas/fisiología , Exocitosis , Modelos Moleculares , Mutagénesis , Neuronas/fisiología , Conformación Proteica , Proteínas R-SNARE/genética , Proteínas R-SNARE/fisiología , Proteínas Recombinantes/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Agua
11.
Methods Mol Biol ; 398: 193-219, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18214382

RESUMEN

The current models of eukaryotic plasma membrane organization separate the plasma membrane nto different environments created by lipids and interactions between membrane proteins and the cytoskeleton, but characterization of their physical properties, such as their sizes, lifetimes, and the partitioning of membrane components into each environment, has not been accomplished. Single-moleule (fluorophore) tracking (SMT) experiments are well suited to the noninvasive study of membrane properties. In SMT experiments, the position of a single fluorescently labeled protein or lipid probe is followed optically as it moves within the membrane. If the motion of the probe is unhindered, then the atial trajectory of the molecule will follow two-dimensional Brownian motion. If the probe encounters a structure that in some way inhibits its movement, then the probe's trajectory will deviate from Brownian motion. It is likely that even if a certain type of lipid or protein partitions strongly into one nvironment, each individual lipid or protein will spend some fraction of its lifetime in the less favorable environment. Because SMT follows the motion of an individual probe over a large area (approximately 10 x 10 microm2), transitions between environments can be observed directly by monitoring the path of each protein or lipid. Additionally, heterogeneity owing to multiple populations of molecules permanently residng in different states may be distinguished from a single population of molecules transitioning between different states. By judicious choice of label, such that the motion of the labeled protein or lipid is unafected by the label itself, and through the use of probes with different affinities for each membrane environment, SMT measurements in principle can reveal the structure of the plasma membrane.


Asunto(s)
Membrana Celular/metabolismo , Colorantes Fluorescentes/análisis , Animales , Células CHO , Membrana Celular/química , Colesterol/metabolismo , Cricetinae , Cricetulus , Difusión , Colorantes Fluorescentes/química , Proteínas de la Membrana/análisis , Proteínas de la Membrana/metabolismo , Método de Montecarlo , Movimiento , Rodaminas/química , Procesos Estocásticos , Factores de Tiempo
12.
Proc Natl Acad Sci U S A ; 103(32): 11916-21, 2006 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-16880392

RESUMEN

Lipid membrane fusion is critical to cellular transport and signaling processes such as constitutive secretion, neurotransmitter release, and infection by enveloped viruses. Here, we introduce a powerful computational methodology for simulating membrane fusion from a starting configuration designed to approximate activated prefusion assemblies from neuronal and viral fusion, producing results on a time scale and degree of mechanistic detail not previously possible to our knowledge. We use an approach to the long time scale simulation of fusion by constructing a Markovian state model with large-scale distributed computing, yielding an understanding of fusion mechanisms on time scales previously impossible to simulate to our knowledge. Our simulation data suggest a branched pathway for fusion, in which a common stalk-like intermediate can either rapidly form a fusion pore or remain in a metastable hemifused state that slowly forms fully fused vesicles. This branched reaction pathway provides a mechanistic explanation both for the biphasic fusion kinetics and the stable hemifused intermediates previously observed experimentally. Our distributed computing and Markovian state model approaches provide sufficient sampling to detect rare transitions, a systematic process for analyzing reaction pathways, and the ability to develop quantitative approximations of reaction kinetics for fusion.


Asunto(s)
Fusión de Membrana , Lípidos de la Membrana/química , Algoritmos , Bioquímica/métodos , Simulación por Computador , Cinética , Lípidos/química , Cadenas de Markov , Conformación Molecular , Pliegue de Proteína , Programas Informáticos , Termodinámica , Factores de Tiempo
13.
Biophys J ; 90(3): 927-38, 2006 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-16272447

RESUMEN

Glycosylphosphatidylinositol-linked and transmembrane major histocompatibility complex (MHC) class II I-E(k) proteins, as well as N-(6-tetramethylrhodaminethiocarbamoyl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (Tritc-DHPE), are used as probes to determine the effect of cholesterol concentration on the organization of the plasma membrane at temperatures in the range 22 degrees C-42 degrees C. Cholesterol depletion caused a decrease in the diffusion coefficients for the MHC II proteins and also for a slow fraction of the Tritc-DHPE population. At 37 degrees C, reduction of the total cell cholesterol concentration results in a smaller suppression of the translational diffusion for I-E(k) proteins (twofold) than was observed in earlier work at 22 degrees C (five sevenfold) Vrljic, M., S. Y. Nishimura, W. E. Moerner, and H. M. McConnell. 2005. Biophys. J. 88:334-347. At 37 degrees C, the diffusion of both I-E(k) proteins is Brownian (0.9 < alpha-parameter < 1.1). More than 99% of the protein population diffuses homogeneously when imaged at 65 frames per s. As the temperature is raised from 22 degrees C to 42 degrees C, a change in activation energy is seen at approximately 35 degrees C in the Arrhenius plots. Cytoskeletal effects appear to be minimal. These results are consistent with a previously described model of solid-like domain formation in the plasma membrane.


Asunto(s)
Membrana Celular/metabolismo , Colesterol/química , Glicosilfosfatidilinositoles/química , Animales , Células CHO , Colesterol/metabolismo , Cricetinae , Citoesqueleto/metabolismo , Difusión , Antígenos de Histocompatibilidad Clase II/química , Procesamiento de Imagen Asistido por Computador , Lípidos/química , Ratones , Nocodazol/farmacología , Proteínas/química , Temperatura , Factores de Tiempo , Transfección
14.
Biophys J ; 88(1): 334-47, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15516525

RESUMEN

Glycosylphosphatidylinositol (GPI)-linked and native major histocompatibility complex class II I-E(k) were used as probes to determine the effect of varying cholesterol concentration on the mobility of proteins in the plasma membrane. These proteins were imaged in Chinese hamster ovary cells using single-molecule fluorescence microscopy. Observed diffusion coefficients of both native and GPI-linked I-E(k) proteins were found to depend on cholesterol concentration. As the cholesterol concentration decreases the diffusion coefficients decrease by up to a factor of 7 for native and 5 for GPI-linked I-E(k). At low cholesterol concentrations, after sphingomyelinase treatment, the diffusion coefficients are reduced by up to a factor of 60 for native and 190 for GPI-linked I-E(k). The effect is reversible on cholesterol reintroduction. Diffusion at all studied cholesterol concentrations, for both proteins, appears to be predominantly Brownian for time lags up to 2.5 s when imaged at 10 Hz. A decrease in diffusion coefficients is observed for other membrane proteins and lipid probes, DiIC12 and DiIC18. Fluorescence recovery after photobleaching measurements shows that the fraction of immobile lipid probe increases from 8 to approximately 40% after cholesterol extraction. These results are consistent with the previous work on cholesterol-phospholipid interactions. That is, cholesterol extraction destroys liquid cholesterol-phospholipid complexes, leaving solid-like high melting phospholipid domains that inhibit the lateral diffusion of membrane components.


Asunto(s)
Membrana Celular/metabolismo , Colesterol/química , Genes MHC Clase II/genética , Complejo Mayor de Histocompatibilidad , Actinas/química , Animales , Antineoplásicos/farmacología , Fenómenos Biofísicos , Biofisica , Células CHO , Cricetinae , Citocalasina D/farmacología , Citoesqueleto/metabolismo , Difusión , Procesamiento de Imagen Asistido por Computador , Lípidos/química , Ratones , Nocodazol/farmacología , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Fosfolípidos/química , Estructura Terciaria de Proteína , Proteínas/química , Espectrometría de Fluorescencia , Esfingomielinas/química , Factores de Tiempo
15.
Artículo en Inglés | MEDLINE | ID: mdl-12574063

RESUMEN

The observation of liquid-liquid immiscibility in cholesterol-phospholipid mixtures in monolayers and bilayers has opened a broad field of research into their physical chemistry. Some mixtures exhibit multiple immiscibilities. This unusual property has led to a thermodynamic model of "condensed complexes." These complexes are the consequence of an exothermic, reversible reaction between cholesterol and phospholipids. In this quantitative model the complexes are sometimes concentrated in a separate liquid phase. The phase separation into a complex-rich phase depends on membrane composition and intensive variables such as temperature. The properties of defined cholesterol-phospholipid mixtures provide a conceptual foundation for the exploration of a number of aspects of the biophysics and biochemistry of animal cell membranes.


Asunto(s)
Membrana Celular/química , Colesterol/química , Membrana Dobles de Lípidos/química , Fluidez de la Membrana , Fosfolípidos/química , Soluciones/química , Animales , Coloides/química , Sustancias Macromoleculares , Microdominios de Membrana/química , Proteínas de la Membrana/química , Membranas Artificiales
16.
Biophys J ; 83(5): 2681-92, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12414700

RESUMEN

Single-molecule epifluorescence microscopy was used to observe the translational motion of GPI-linked and native I-E(k) class II MHC membrane proteins in the plasma membrane of CHO cells. The purpose of the study was to look for deviations from Brownian diffusion that might arise from barriers to this motion. Detergent extraction had suggested that these proteins may be confined to lipid microdomains in the plasma membrane. The individual I-E(k) proteins were visualized with a Cy5-labeled peptide that binds to a specific extracytoplasmic site common to both proteins. Single-molecule trajectories were used to compute a radial distribution of displacements, yielding average diffusion coefficients equal to 0.22 (GPI-linked I-E(k)) and 0.18 microm(2)/s (native I-E(k)). The relative diffusion of pairs of proteins was also studied for intermolecular separations in the range 0.3-1.0 microm, to distinguish between free diffusion of a protein molecule and diffusion of proteins restricted to a rapidly diffusing small domain. Both analyses show that motion is predominantly Brownian. This study finds no strong evidence for significant confinement of either GPI-linked or native I-E(k) in the plasma membrane of CHO cells.


Asunto(s)
Membrana Celular/metabolismo , Actinas/química , Animales , Fenómenos Biofísicos , Biofisica , Células CHO , Cricetinae , Citoplasma/metabolismo , Citoesqueleto/metabolismo , Detergentes/farmacología , Difusión , Genes MHC Clase II , Microscopía Fluorescente , Oxígeno/metabolismo , Biosíntesis de Péptidos , Péptidos/química , Estructura Terciaria de Proteína , Proteínas/química , Factores de Tiempo , Tubulina (Proteína)/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA