Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 61(25): e202203669, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35384197

RESUMEN

The ambient pressure cation disordered InVO3 bixbyite has been predicted to form a GdFeO3 -type perovskite phase under high pressure and high temperature. Contrary to the expectation, InVO3 was found to crystallize in the polar LiNbO3 -type structure with a calculated spontaneous polarization as large as 74 µC cm-2 . Antiferromagnetic coupling of V3+ magnetic moments and a cooperative magnetic ground state below about 10 K coupled with a polar structure suggest an intriguing ground state of the novel LiNbO3 -type high-pressure InVO3 structure.

2.
Inorg Chem ; 60(2): 872-882, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33355450

RESUMEN

We report the synthesis, structure, and redox behavior of the cation-ordered tetragonal Sc2VO5+δ defect fluorite superstructure previously thought to be the oxygen precise A3+2B4+O5 phase. Four synthesis routes in oxidative, reductive, and inert atmospheres are demonstrated. Ex situ and in situ powder X-ray and neutron diffraction analyses reveal vanadium disproportionation reactions. The structure-reaction map illustrates the oxygen-dependent competition between the tetragonal cation and anion ordered Sc2VO5+δ and the disordered cubic Sc2VO5+δ' (δ < δ' ≤ 0.5) phases as a function of temperature. Oxidation states and oxide stoichiometries were determined with DC magnetometry and XANES experiments. The tetragonal cation ordered Sc2VO5+δ phase with δ = -0.15(2) for as-synthesized samples reveals vanadium charge ordering. V3+ and V4+ cations occupy octahedral sites, whereas V5+ predominantly occupies a tetrahedral site. The paramagnetic 8g{V3+/4+}4 clusters are isolated by diamagnetic 2cV5+ cations. At temperatures below 500 °C the 8g{V3+/4+}4 clusters can be topotactically fine-tuned with varying V3+/V4+ ratios. Above 600 °C the tetragonal structure oxidizes to the cubic Sc2VO5+δ' fluorite phase-its disordered competitor. The investigation of the cation- and anion-ordered Sc-V-O phases, their formation, and thermal stability is important for the design of low-temperature solid state oxide ion conductors and vacancy structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...