Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38339325

RESUMEN

BACKGROUND: A total of 30-40% of diffuse large B cell lymphoma (DLBCL) patients will either not respond to the standard therapy or their disease will recur. The first-line treatment for DLBCL is rituximab and combination chemotherapy. This treatment involves the chemotherapy-induced recruitment of tumor-associated macrophages that recognize and kill rituximab-opsonized DLBCL cells. However, we lack insights into the factors responsible for the recruitment and functionality of macrophages in DLBCL tumors. METHODS: We have studied the effects of the immunomodulatory lipid sphingosine-1-phosphate (S1P) on macrophage activity in DLBCL, both in vitro and in animal models. RESULTS: We show that tumor-derived S1P mediates the chemoattraction of both monocytes and macrophages in vitro and in animal models, an effect that is dependent upon the S1P receptor S1PR1. However, S1P inhibited M1 macrophage-mediated phagocytosis of DLBCL tumor cells opsonized with the CD20 monoclonal antibodies rituximab and ofatumumab, an effect that could be reversed by an S1PR1 inhibitor. CONCLUSIONS: Our data show that S1P signaling can modulate macrophage recruitment and tumor cell killing by anti-CD20 monoclonal antibodies in DLBCL. The administration of S1PR1 inhibitors could enhance the phagocytosis of tumor cells and improve outcomes for patients.

2.
Life (Basel) ; 13(2)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36836878

RESUMEN

Epstein-Barr virus (EBV), defined as a group I carcinogen by the World Health Organization (WHO), is present in the tumour cells of patients with different forms of B-cell lymphoma, including Burkitt lymphoma, Hodgkin lymphoma, post-transplant lymphoproliferative disorders, and, most recently, diffuse large B-cell lymphoma (DLBCL). Understanding how EBV contributes to the development of these different types of B-cell lymphoma has not only provided fundamental insights into the underlying mechanisms of viral oncogenesis, but has also highlighted potential new therapeutic opportunities. In this review, we describe the effects of EBV infection in normal B-cells and we address the germinal centre model of infection and how this can lead to lymphoma in some instances. We then explore the recent reclassification of EBV+ DLBCL as an established entity in the WHO fifth edition and ICC 2022 classifications, emphasising the unique nature of this entity. To that end, we also explore the unique genetic background of this entity and briefly discuss the potential role of the tumour microenvironment in lymphomagenesis and disease progression. Despite the recent progress in elucidating the mechanisms of this malignancy, much work remains to be done to improve patient stratification, treatment strategies, and outcomes.

3.
Cancers (Basel) ; 14(17)2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36077832

RESUMEN

In this study, we have re-evaluated how EBV status influences clinical outcome. To accomplish this, we performed a literature review of all studies that have reported the effect of EBV status on patient outcome and also explored the effect of EBV positivity on outcome in a clinical trial of children with cHL from the UK. Our literature review revealed that almost all studies of older adults/elderly patients have reported an adverse effect of an EBV-positive status on outcome. In younger adults with cHL, EBV-positive status was either associated with a moderate beneficial effect or no effect, and the results in children and adolescents were conflicting. Our own analysis of a series of 166 children with cHL revealed no difference in overall survival between EBV-positive and EBV-negative groups (p = 0.942, log rank test). However, EBV-positive subjects had significantly longer event-free survival (p = 0.0026). Positive latent membrane protein 1 (LMP1) status was associated with a significantly lower risk of treatment failure in a Cox regression model (HR = 0.21, p = 0.005). In models that controlled for age, gender, and stage, EBV status had a similar effect size and statistical significance. This study highlights the age-related impact of EBV status on outcome in cHL patients and suggests different pathogenic effects of EBV at different stages of life.

5.
Mod Pathol ; 33(12): 2407-2421, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32483241

RESUMEN

The Epstein-Barr virus (EBV) is linked to various B-cell lymphomas, including Burkitt lymphoma (BL), classical Hodgkin lymphoma (cHL) and diffuse large B-cell lymphoma (DLBCL) at frequencies ranging, by routine techniques, from 5 to 10% of cases in DLBCL to >95% in endemic BL. Using higher-sensitivity methods, we recently detected EBV traces in a few EBV-negative BL cases, possibly suggesting a "hit-and-run" mechanism. Here, we used routine and higher-sensitivity methods (qPCR and ddPCR for conserved EBV genomic regions and miRNAs on microdissected tumor cells; EBNA1 mRNA In situ detection by RNAscope) to assess EBV infection in a larger lymphoma cohort [19 BL, 34 DLBCL, 44 cHL, 50 follicular lymphomas (FL), 10 T-lymphoblastic lymphomas (T-LL), 20 hairy cell leukemias (HCL), 10 mantle cell lymphomas (MCL)], as well as in several lymphoma cell lines (9 cHL and 6 BL). qPCR, ddPCR, and RNAscope consistently documented the presence of multiple EBV nucleic acids in rare tumor cells of several cases EBV-negative by conventional methods that all belonged to lymphoma entities clearly related to EBV (BL, 6/9 cases; cHL, 16/32 cases; DLBCL, 11/30 cases), in contrast to fewer cases (3/47 cases) of FL (where the role of EBV is more elusive) and no cases (0/40) of control lymphomas unrelated to EBV (HCL, T-LL, MCL). Similarly, we revealed traces of EBV infection in 4/5 BL and 6/7 HL cell lines otherwise conventionally classified as EBV negative. Interestingly, additional EBV-positive cases (1 DLBCL, 2 cHL) relapsed as EBV-negative by routine methods while showing EBNA1 expression in rare tumor cells by RNAscope. The relapse specimens were clonally identical to their onset biopsies, indicating that the lymphoma clone can largely loose the EBV genome over time but traces of EBV infection are still detectable by high-sensitivity methods. We suggest EBV may contribute to lymphoma pathogenesis more widely than currently acknowledged.


Asunto(s)
Infecciones por Virus de Epstein-Barr/virología , Antígenos Nucleares del Virus de Epstein-Barr/genética , Herpesvirus Humano 4/genética , Enfermedad de Hodgkin/virología , Linfoma no Hodgkin/virología , ARN Mensajero/genética , ARN Viral/genética , Infecciones por Virus de Epstein-Barr/diagnóstico , Enfermedad de Hodgkin/diagnóstico , Humanos , Italia , Linfoma no Hodgkin/diagnóstico , Técnicas de Diagnóstico Molecular , Células U937 , Carga Viral
6.
Leukemia ; 33(12): 2884-2897, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31097785

RESUMEN

Although the over-expression of angiogenic factors is reported in diffuse large B-cell lymphoma (DLBCL), the poor response to anti-VEGF drugs observed in clinical trials suggests that angiogenesis in these tumours might be driven by VEGF-independent pathways. We show that sphingosine kinase-1 (SPHK1), which generates the potent bioactive sphingolipid sphingosine-1-phosphate (S1P), is over-expressed in DLBCL. A meta-analysis of over 2000 cases revealed that genes correlated with SPHK1 mRNA expression in DLBCL were significantly enriched for tumour angiogenesis meta-signature genes; an effect evident in both major cell of origin (COO) and stromal subtypes. Moreover, we found that S1P induces angiogenic signalling and a gene expression programme that is present within the tumour vasculature of SPHK1-expressing DLBCL. Importantly, S1PR1 functional antagonists, including Siponimod, and the S1P neutralising antibody, Sphingomab, inhibited S1P signalling in DLBCL cells in vitro. Furthermore, Siponimod, also reduced angiogenesis and tumour growth in an S1P-producing mouse model of angiogenic DLBCL. Our data define a potential role for S1P signalling in driving an angiogenic gene expression programme in the tumour vasculature of DLBCL and suggest novel opportunities to target S1P-mediated angiogenesis in patients with DLBCL.


Asunto(s)
Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/metabolismo , Lisofosfolípidos/metabolismo , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Transducción de Señal , Esfingosina/análogos & derivados , Transcriptoma , Animales , Línea Celular Tumoral , Biología Computacional/métodos , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Linfoma de Células B Grandes Difuso/patología , Lisofosfolípidos/genética , Ratones , ARN Mensajero/genética , Esfingosina/genética , Esfingosina/metabolismo
7.
J Pathol ; 248(2): 142-154, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30666658

RESUMEN

The Epstein-Barr virus (EBV) is found almost exclusively in the activated B-cell (ABC) subtype of diffuse large B-cell lymphoma (DLBCL), yet its contribution to this tumour remains poorly understood. We have focused on the EBV-encoded latent membrane protein-1 (LMP1), a constitutively activated CD40 homologue expressed in almost all EBV-positive DLBCLs and which can disrupt germinal centre (GC) formation and drive lymphomagenesis in mice. Comparison of the transcriptional changes that follow LMP1 expression with those that follow transient CD40 signalling in human GC B cells enabled us to define pathogenic targets of LMP1 aberrantly expressed in ABC-DLBCL. These included the down-regulation of S1PR2, a sphingosine-1-phosphate (S1P) receptor that is transcriptionally down-regulated in ABC-DLBCL, and when genetically ablated leads to DLBCL in mice. Consistent with this, we found that LMP1-expressing primary ABC-DLBCLs were significantly more likely to lack S1PR2 expression than were LMP1-negative tumours. Furthermore, we showed that the down-regulation of S1PR2 by LMP1 drives a signalling loop leading to constitutive activation of the phosphatidylinositol-3-kinase (PI3-K) pathway. Finally, core LMP1-PI3-K targets were enriched for lymphoma-related transcription factors and genes associated with shorter overall survival in patients with ABC-DLBCL. Our data identify a novel function for LMP1 in aggressive DLBCL. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Infecciones por Virus de Epstein-Barr/virología , Herpesvirus Humano 4/metabolismo , Linfoma de Células B Grandes Difuso/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Proteínas de la Matriz Viral/metabolismo , Antígenos CD40/genética , Antígenos CD40/metabolismo , Línea Celular Tumoral , Transformación Celular Viral , Bases de Datos Genéticas , Infecciones por Virus de Epstein-Barr/mortalidad , Regulación Neoplásica de la Expresión Génica , Herpesvirus Humano 4/genética , Interacciones Huésped-Patógeno , Humanos , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/mortalidad , Linfoma de Células B Grandes Difuso/virología , Fosfatidilinositol 3-Quinasa/metabolismo , Pronóstico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Receptores de Esfingosina-1-Fosfato/genética , Proteínas de la Matriz Viral/genética
8.
PLoS Biol ; 16(9): e2005046, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30180168

RESUMEN

The microenvironment of lymphoid organs can aid healthy immune function through provision of both structural and molecular support. In mice, fibroblastic reticular cells (FRCs) create an essential T-cell support structure within lymph nodes, while human FRCs are largely unstudied. Here, we show that FRCs create a regulatory checkpoint in human peripheral T-cell activation through 4 mechanisms simultaneously utilised. Human tonsil and lymph node-derived FRCs constrained the proliferation of both naïve and pre-activated T cells, skewing their differentiation away from a central memory T-cell phenotype. FRCs acted unilaterally without requiring T-cell feedback, imposing suppression via indoleamine-2,3-dioxygenase, adenosine 2A Receptor, prostaglandin E2, and transforming growth factor beta receptor (TGFßR). Each mechanistic pathway was druggable, and a cocktail of inhibitors, targeting all 4 mechanisms, entirely reversed the suppressive effect of FRCs. T cells were not permanently anergised by FRCs, and studies using chimeric antigen receptor (CAR) T cells showed that immunotherapeutic T cells retained effector functions in the presence of FRCs. Since mice were not suitable as a proof-of-concept model, we instead developed a novel human tissue-based in situ assay. Human T cells stimulated using standard methods within fresh tonsil slices did not proliferate except in the presence of inhibitors described above. Collectively, we define a 4-part molecular mechanism by which FRCs regulate the T-cell response to strongly activating events in secondary lymphoid organs while permitting activated and CAR T cells to utilise effector functions. Our results define 4 feasible strategies, used alone or in combinations, to boost primary T-cell responses to infection or cancer by pharmacologically targeting FRCs.


Asunto(s)
Diferenciación Celular/inmunología , Microambiente Celular , Ganglios Linfáticos/inmunología , Activación de Linfocitos/inmunología , Linfocitos T/citología , Adulto , Proliferación Celular , Niño , Fibroblastos/citología , Humanos , Memoria Inmunológica , Fenotipo
9.
Cancers (Basel) ; 10(9)2018 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-30149502

RESUMEN

The Epstein-Barr virus (EBV) is present in the tumour cells of a subset of patients with classic Hodgkin lymphoma (cHL), yet the contribution of the virus to the pathogenesis of these tumours remains only poorly understood. The EBV genome in virus-associated cHL expresses a limited subset of genes, restricted to the non-coding Epstein-Barr virus-encoded RNAs (EBERs) and viral miRNA, as well as only three virus proteins; the Epstein-Barr virus nuclear antigen-1 (EBNA1), and the two latent membrane proteins, known as LMP1 and LMP2, the latter of which has two isoforms, LMP2A and LMP2B. LMP1 and LMP2A are of particular interest because they are co-expressed in tumour cells and can activate cellular signalling pathways, driving aberrant cellular transcription in infected B cells to promote lymphomagenesis. This article seeks to bring together the results of recent studies of the latent membrane proteins in different B cell systems, including experiments in animal models as well as a re-analysis of our own transcriptional data. In doing so, we summarise the potentially co-operative and antagonistic effects of the LMPs that are relevant to B cell lymphomagenesis.

10.
Pathogens ; 7(3)2018 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-29954084

RESUMEN

Pathogenic viruses have evolved to manipulate the host cell utilising a variety of strategies including expression of viral proteins to hijack or mimic the activity of cellular functions. DNA tumour viruses often establish latent infection in which no new virions are produced, characterized by the expression of a restricted repertoire of so-called latent viral genes. These latent genes serve to remodel cellular functions to ensure survival of the virus within host cells, often for the lifetime of the infected individual. However, under certain circumstances, virus infection may contribute to transformation of the host cell; this event is not a usual outcome of infection. Here, we review how the Epstein⁻Barr virus (EBV), the prototypic oncogenic human virus, modulates host cell functions, with a focus on the role of the EBV latent genes in classical Hodgkin lymphoma.

11.
Data Brief ; 15: 222-227, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29022001

RESUMEN

The data presented here are related to the research article entitled "Selective expression of the transcription elongation factor ELL3 in B cells prior to ELL2 drives proliferation and survival" (Alexander et al., 2017) [1]. The cited research article characterizes Eleven-nineteen Lysine-rich Leukemia 3 (ELL3) expression in the B cell compartment and functional dependence in B lymphoma cell lines. This data report describes the mRNA expression pattern in a panel of cell lines representing the B cell compartment, supplementing the protein expression data presented in the associated research report. In addition, a reanalysis is presented of publicly available mRNA expression data from primary murine B cells to reveal dynamic regulation of the ELL family members post LPS stimulation (Barwick et al., 2016) [2]. The effect of ELL3 depletion on cell morphology, latent Epstein Barr Virus (EBV) lytic replication and differentiation markers in a Burkitt's lymphoma (BL) cell line cells are presented.

12.
Mol Immunol ; 91: 8-16, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28858629

RESUMEN

B cell activation is dependent on a large increase in transcriptional output followed by focused expression on secreted immunoglobulin as the cell transitions to an antibody producing plasma cell. The rapid transcriptional induction is facilitated by the release of poised RNA pol II into productive elongation through assembly of the super elongation complex (SEC). We report that a SEC component, the Eleven -nineteen Lysine-rich leukemia (ELL) family member 3 (ELL3) is dynamically up-regulated in mature and activated human B cells followed by suppression as B cells transition to plasma cells in part mediated by the transcription repressor PRDM1. Burkitt's lymphoma and a sub-set of Diffuse Large B cell lymphoma cell lines abundantly express ELL3. Depletion of ELL3 in the germinal center derived lymphomas results in severe disruption of DNA replication and cell division along with increased DNA damage and cell death. This restricted utilization and survival dependence reveal a key step in B cell activation and indicate a potential therapeutic target against B cell lymphoma's with a germinal center origin.


Asunto(s)
Linfocitos B/inmunología , División Celular/inmunología , Regulación de la Expresión Génica/inmunología , Factores de Elongación Transcripcional/inmunología , División Celular/genética , Supervivencia Celular/genética , Supervivencia Celular/inmunología , Replicación del ADN/genética , Replicación del ADN/inmunología , Humanos , Células Jurkat , ARN Polimerasa II/genética , ARN Polimerasa II/inmunología , Factores de Elongación Transcripcional/genética
13.
Dis Model Mech ; 8(11): 1401-12, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26398941

RESUMEN

Chronic lymphocytic leukaemia (CLL) cells require microenvironmental support for their proliferation. This can be recapitulated in highly immunocompromised hosts in the presence of T cells and other supporting cells. Current primary CLL xenograft models suffer from limited duration of tumour cell engraftment coupled with gradual T-cell outgrowth. Thus, a greater understanding of the interaction between CLL and T cells could improve their utility. In this study, using two distinct mouse xenograft models, we investigated whether xenografts recapitulate CLL biology, including natural environmental interactions with B-cell receptors and T cells, and whether manipulation of autologous T cells can expand the duration of CLL engraftment. We observed that primary CLL xenografts recapitulated both the tumour phenotype and T-cell repertoire observed in patients and that engraftment was significantly shorter for progressive tumours. A reduction in the number of patient T cells that were injected into the mice to 2-5% of the initial number or specific depletion of CD8(+) cells extended the limited xenograft duration of progressive cases to that characteristic of indolent disease. We conclude that manipulation of T cells can enhance current CLL xenograft models and thus expand their utility for investigation of tumour biology and pre-clinical drug assessment.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Huésped Inmunocomprometido , Leucemia Linfocítica Crónica de Células B/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Subgrupos de Linfocitos T/inmunología , Microambiente Tumoral , Animales , Linfocitos T CD8-positivos/patología , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Técnicas de Cocultivo , Citotoxicidad Inmunológica , Supervivencia de Injerto , Xenoinjertos , Humanos , Leucemia Linfocítica Crónica de Células B/patología , Activación de Linfocitos , Depleción Linfocítica , Linfocitos Infiltrantes de Tumor/patología , Ratones Endogámicos NOD , Ratones SCID , Trasplante de Neoplasias , Fenotipo , Bazo/inmunología , Subgrupos de Linfocitos T/patología , Factores de Tiempo
14.
J Pathol ; 235(2): 312-22, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25294567

RESUMEN

Since the discovery in 1964 of the Epstein-Barr virus (EBV) in African Burkitt lymphoma, this virus has been associated with a remarkably diverse range of cancer types. Because EBV persists in the B cells of the asymptomatic host, it can easily be envisaged how it contributes to the development of B-cell lymphomas. However, EBV is also found in other cancers, including T-cell/natural killer cell lymphomas and several epithelial malignancies. Explaining the aetiological role of EBV is challenging, partly because the virus probably contributes differently to each tumour and partly because the available disease models cannot adequately recapitulate the subtle variations in the virus-host balance that exist between the different EBV-associated cancers. A further challenge is to identify the co-factors involved; because most persistently infected individuals will never develop an EBV-associated cancer, the virus cannot be working alone. This article will review what is known about the contribution of EBV to lymphoma development.


Asunto(s)
Infecciones por Virus de Epstein-Barr/virología , Herpesvirus Humano 4/patogenicidad , Linfoma/virología , Animales , Biopsia , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/inmunología , Infecciones por Virus de Epstein-Barr/patología , Herpesvirus Humano 4/inmunología , Interacciones Huésped-Patógeno , Humanos , Linfoma/inmunología , Linfoma/patología , Patología Molecular/métodos , Valor Predictivo de las Pruebas , Pronóstico , Factores de Riesgo , Virología/métodos , Virulencia
15.
J Pathol ; 235(3): 456-65, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25294670

RESUMEN

Undifferentiated nasopharyngeal carcinoma (NPC) is a highly metastatic disease that is consistently associated with Epstein-Barr virus (EBV) infection. In this study, we have investigated the contribution of lysophosphatidic acid (LPA) signalling to the pathogenesis of NPC. Here we demonstrate two distinct functional roles for LPA in NPC. First, we show that LPA enhances the migration of NPC cells and second, that it can inhibit the activity of EBV-specific cytotoxic T cells. Focusing on the first of these phenotypes, we show that one of the LPA receptors, LPA receptor 5 (LPAR5), is down-regulated in primary NPC tissues and that this down-regulation promotes the LPA-induced migration of NPC cell lines. Furthermore, we found that EBV infection or ectopic expression of the EBV-encoded LMP2A was sufficient to down-regulate LPAR5 in NPC cell lines. Our data point to a central role for EBV in mediating the oncogenic effects of LPA in NPC and identify LPA signalling as a potential therapeutic target in this disease.


Asunto(s)
Regulación hacia Abajo/fisiología , Infecciones por Virus de Epstein-Barr/fisiopatología , Regulación Neoplásica de la Expresión Génica/fisiología , Lisofosfolípidos/fisiología , Neoplasias Nasofaríngeas/fisiopatología , Receptores del Ácido Lisofosfatídico/fisiología , Transducción de Señal/fisiología , Adenocarcinoma/patología , Adenocarcinoma/fisiopatología , Carcinoma , Línea Celular Tumoral , Movimiento Celular/fisiología , Herpesvirus Humano 4/fisiología , Humanos , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/patología , Hidrolasas Diéster Fosfóricas/fisiología , Receptores del Ácido Lisofosfatídico/genética , Linfocitos T Citotóxicos/patología , Proteínas de la Matriz Viral/fisiología
16.
J Gen Virol ; 95(Pt 9): 1861-1869, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24893782

RESUMEN

The relationship between Epstein-Barr virus (EBV) and the germinal centre (GC) of the asymptomatic host remains an enigma. The occasional appearance of EBV-positive germinal centres in some patients, particularly those with a history of immunosuppression, suggests that EBV numbers in the GC are subject to immune control. The relationship, if any, between lymphoid hyperplasia with EBV-positive germinal centres and subsequent or concurrent lymphomagenesis remains to be clarified. As far as the development of EBV-associated Hodgkin's lymphoma is concerned, the suppression of virus replication, mediated by LMP1 on the one hand, and the loss of B-cell receptor signalling on the other, appears to be an important pathogenic mechanism. A further important emerging concept is that alterations in the microenvironment of the EBV-infected B-cell may be important for lymphomagenesis.


Asunto(s)
Linfocitos B/virología , Centro Germinal/inmunología , Centro Germinal/virología , Herpesvirus Humano 4/inmunología , Enfermedad de Hodgkin/virología , Adulto , Linfocitos B/inmunología , Diferenciación Celular/inmunología , Infecciones por Virus de Epstein-Barr/virología , Femenino , Enfermedad de Hodgkin/inmunología , Humanos , Masculino , Persona de Mediana Edad , Seudolinfoma/virología , Receptores de Antígenos de Linfocitos B/inmunología , Proteínas de la Matriz Viral , Replicación Viral/inmunología , Adulto Joven
17.
Artículo en Inglés | MEDLINE | ID: mdl-22580854

RESUMEN

AIMS: The aim of this review was to summarize recent knowledge of the structure and function of a transcriptional repressor, B lymphocyte induced maturation protein 1 (BLIMP1) and its participation in the pathogenesis of B lymphomas. METHODS AND RESULTS: This review summarizes the structure and function of BLIMP1, its major target genes and its role as a tumour suppressor in B cell lymphomas. We review our recent data implicating the loss of BLIMP1α as an important step in the pathogenesis of the Epstein-Barr virus (EBV) associated B cell lymphomas. CONCLUSIONS: BLIMP1 is a transcriptional repressor essential for the differentiation of germinal centre (GC) B cells to plasma cells. The loss of BLIMP1 in GC B cells could contribute to the pathogenesis of EBV-associated lymphomas by preventing plasma cell differentiation and viral replication.


Asunto(s)
Diferenciación Celular/genética , Genes Supresores de Tumor/fisiología , Linfoma de Células B/genética , Células Plasmáticas/fisiología , Proteínas Represoras/genética , Animales , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Centro Germinal/fisiología , Herpesvirus Humano 4/fisiología , Humanos , Inmunoglobulinas/biosíntesis , Linfoma de Células B/virología , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Proteínas Represoras/fisiología
18.
Pathogens ; 1(2): 83-101, 2012 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-25436766

RESUMEN

B-lymphocyte-induced maturation protein 1 (BLIMP1) exists as two major isoforms, α and ß, which arise from alternate promoters. Inactivation of the full length BLIMP1α isoform is thought to contribute to B cell lymphomagenesis by blocking post-germinal centre (GC) B cell differentiation. In contrast, the shorter ß isoform is functionally impaired and over-expressed in several haematological malignancies, including diffuse large B cell lymphomas (DLBCL). We have studied the influence on BLIMP1ß expression of the Epstein-Barr virus (EBV), a human herpesvirus that is implicated in the pathogenesis of several GC-derived lymphomas, including a subset of DLBCL and Hodgkin's lymphoma (HL). We show that BLIMP1ß expression is increased following the EBV infection of normal human tonsillar GC B cells. We also show that this change in expression is accompanied by hypomethylation of the BLIMP1ß-specific promoter. Furthermore, we confirmed previous reports that the BLIMP1ß promoter is hypomethylated in DLBCL cell lines and show for the first time that BLIMP1ß is hypomethylated in the Hodgkin/Reed-Sternberg (HRS) cells of HL. Our results provide evidence in support of a role for BLIMP1ß in the pathogenesis of EBV-associated B cell lymphomas.

19.
Int J Cancer ; 129(12): 2787-96, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21491422

RESUMEN

Hodgkin/Reed-Sternberg (H/RS) cells are believed to represent clonal progeny of Germinal Centre B cells that have escaped negative selection by evading apoptosis. Aberrant constitutive activity of the transcription factor NF-κB plays a key role in the pathogenesis of Hodgkin's Lymphoma (HL), conferring a survival advantage on H/RS cells. Bfl-1 is a pro-survival NF-κB target gene from the Bcl-2 family of apoptosis-regulating proteins. Here, we report that bfl-1 (also known as A1 or GRS) is frequently expressed in primary H/RS cells from HL tumor biopsies and that elevated bfl-1 expression is a feature of H/RS derived cell lines. We show that bfl-1 is an NF-κB target gene in this cell context and that this regulation is effected through a p65-binding DNA element located in its promoter. We demonstrate that ectopic Bfl-1 can rescue cultured H/RS cells from apoptosis induced by pharmacological inhibitors of NF-κB, and that knockdown of bfl-1 potentiates the pro-apoptotic effect of these agents. These findings are the first indication that Bfl-1 plays a crucial role in setting the elevated threshold of resistance of this malignant cell type to apoptosis.


Asunto(s)
Enfermedad de Hodgkin/genética , FN-kappa B/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Células de Reed-Sternberg/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Enfermedad de Hodgkin/patología , Humanos , Antígenos de Histocompatibilidad Menor , FN-kappa B/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
20.
Blood ; 117(22): 5907-17, 2011 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-21411757

RESUMEN

An important pathogenic event in Epstein-Barr virus (EBV)-associated lymphomas is the suppression of virus replication, which would otherwise lead to cell death. Because virus replication in B cells is intimately linked to their differentiation toward plasma cells, we asked whether the physiologic signals that drive normal B-cell differentiation are absent in EBV-transformed cells. We focused on BLIMP1α, a transcription factor that is required for plasma cell differentiation and that is inactivated in diffuse large B-cell lymphomas. We show that BLIMP1α expression is down-regulated after EBV infection of primary germinal center B cells and that the EBV oncogene, latent membrane protein-1 (LMP-1), is alone capable of inducing this down-regulation in these cells. Furthermore, the down-regulation of BLIMP1α by LMP-1 was accompanied by a partial disruption of the BLIMP1α transcriptional program, including the aberrant induction of MYC, the repression of which is required for terminal differentiation. Finally, we show that the ectopic expression of BLIMP1α in EBV-transformed cells can induce the viral lytic cycle. Our results suggest that LMP-1 expression in progenitor germinal center B cells could contribute to the pathogenesis of EBV-associated lymphomas by down-regulating BLIMP1α, in turn preventing plasma cell differentiation and induction of the viral lytic cycle.


Asunto(s)
Linfocitos B/virología , Diferenciación Celular , Herpesvirus Humano 4/fisiología , Linfoma de Células B/etiología , Células Plasmáticas/patología , Proteínas Represoras/metabolismo , Proteínas de la Matriz Viral/metabolismo , Linfocitos B/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Western Blotting , Transformación Celular Viral , Células Cultivadas , Niño , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/virología , Perfilación de la Expresión Génica , Centro Germinal , Humanos , Técnicas para Inmunoenzimas , Linfoma de Células B/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Tonsila Palatina/citología , Tonsila Palatina/metabolismo , Células Plasmáticas/metabolismo , Factor 1 de Unión al Dominio 1 de Regulación Positiva , ARN Mensajero/genética , Proteínas Represoras/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas de la Matriz Viral/genética , Latencia del Virus , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...