Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Int ; 149: 106329, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33561618

RESUMEN

Road traffic emissions are considered a major contributor to urban air pollution, but clean air actions have led to a huge reduction in emissions per vehicle. This raises a pressing question on the potential to further reduce road traffic emissions to improve air quality. Here, we analysed ~11 million real-world data to estimate the contribution of road traffic to roadside and urban concentrations for several major cities. Our results confirm that road traffic remains a dominant source of nitrogen dioxide and a significant source of primary coarse particulate matter in the European cities. However, it now represents a relatively small component of overall PM2.5 at urban background locations in cities with strong controls on traffic emissions (including European cities and Beijing) and many roadside sites will exceed the WHO guideline (10 µg m-3 annual mean) even when this source is eliminated. This suggests that further controls on traffic emissions, including the transition to a battery-electric fleet, are needed to reduce NO2 concentrations, but this will have limited benefit to reduce the concentration of fine particles, except in countries where the use of diesel particle filters is not mandatory. There are substantial differences between cities and the optimal solution will differ from one to another.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire/prevención & control , Beijing , Ciudades , Monitoreo del Ambiente , Material Particulado/análisis , Emisiones de Vehículos/análisis
2.
Nat Prod Res ; 34(20): 2900-2906, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30966795

RESUMEN

The root of plant Polygala arillata has been used in the Oriental medicine as a tonic and for the treatment of certain diseases. Our current research on phytochemical profile of the roots of P. arillata led to the isolation of a new oligosaccharide ester (1, polygaloside), a new glucose ester (7, arillatoside), along with five known sucrose esters (2-6). Their structures were elucidated on the basis of extensive chemical and spectroscopic methods as well as comparison with those reported in the literature. The occurence of various oligosaccharide esters in P. arillata including unique compounds plays taxonomical impact and suggests potential in medicinal uses of the title plant.


Asunto(s)
Glucosa/aislamiento & purificación , Oligosacáridos/aislamiento & purificación , Raíces de Plantas/química , Polygala/química , Ésteres/química , Ésteres/aislamiento & purificación , Glucosa/análogos & derivados , Estructura Molecular , Oligosacáridos/química , Plantas Medicinales/química , Sacarosa/análisis , Sacarosa/aislamiento & purificación
3.
Environ Sci Technol ; 54(3): 1344-1352, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31766848

RESUMEN

The Beijing government implemented a number of clean air action plans to improve air quality in the last 10 years, which contributed to changes in the concentration of fine particles and their compositions. However, quantifying the impacts of these interventions is challenging as meteorology masks the real changes in observed concentrations. Here, we applied a machine learning technique to decouple the effect of meteorology and evaluate the changes in the chemistry of nonrefractory PM1 (particulate matter less than 1 µm) in winter 2007, 2016, and 2017 as a result of the clean air actions. The observed mass concentrations of PM1 were 74.6, 90.2, and 36.1 µg m-3 in the three winters, while the deweathered concentrations were 74.2, 78.7, and 46.3 µg m-3, respectively. The deweathered concentrations of PM1, organics, sulfate, ammonium, chloride, SO2, NO2, and CO decreased by -38, -46, -59, -24, -51, -89, -16, and -52% in 2017 in comparison to 2007. On the contrary, the deweathered concentration of nitrates increased by 4%. Our results indicate that the clean air actions implemented in 2017 were highly effective in reducing ambient concentrations of SO2, CO, and PM1 organics, sulfate, ammonium, and chloride, but the control of nitrate and PM1 organics remains a major challenge.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Beijing , China , Monitoreo del Ambiente , Tamaño de la Partícula , Material Particulado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...