Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomater Sci ; 6(3): 651-660, 2018 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-29460928

RESUMEN

Inspired by nature, collagen is an outstanding polypeptide utilized to exploit its bioactivity and material design for healthcare technologies. In this study, we describe the self-aggregation of water-dispersible nanocollagen helices upon solidification to fabricate different forms of natural collagen materials. Chemically extracted native collagen fibrils are uniform anisotropic nanoparticles with an average diameter of about 50 nm and a high aspect ratio. The as-prepared collagen nanofibrils are soluble in sodium acetate-acetic acid buffer and are dispersible in water, thus generating collagen liquids that are used as distinct biopolymer precursors for materials development. Our interesting findings indicate that water-dispersible collagen-derived alcogels undergo critical point drying to self-arrange hierarchical nanofibrils into helix bundles in collagen sponge-like aerogels. Notably, using lyophilization to remove water in the biopolymer dispersion, a full regeneration of solidified fibers is achieved, producing collagen aerogels with lightweight characteristics similar to natural cottons. The self-aggregation of water-dispersible collagen occurs under freeze-drying conditions to turn individual nanofibrils into sheets with layered structures in the aerogel networks. The development of transparent, water resistant collagen bioplastic-like membranes was achieved by supramolecular self-assembly of water-dispersible collagen nanofibrils. Our efforts present a reliable concept in soft matter for creating promising collagen examples of liquids, hydrogels, aerogels, and membranes to increase utilization value of native collagen for biomedicine, pharmaceuticals, cosmetics, and nutrients.


Asunto(s)
Colágeno/química , Geles/química , Nanofibras/química , Interacciones Hidrofóbicas e Hidrofílicas , Polimerizacion , Acetato de Sodio/química
2.
Soft Matter ; 13(40): 7292-7299, 2017 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-28951935

RESUMEN

Bioinspired materials have aroused great interest as their inherent biocompatible and structural characteristics have given rise to sustainable applications. In this work, we have reported the phase and morphology transformation of chitosan from crystalline nanofibrils into amorphous sheets for fabricating sustainable materials. Acetylation-induced aqueous dissolution of native chitosan nanofibrils affords water-soluble chitosan as a biopolymeric liquid. Water-soluble chitosan macromolecules self-aggregate into amorphous sheets on solidification, presenting an interesting way to inspire new structures of chitosan assemblies. Through control over gelation, lyophilization, and self-assembled confinement of water-soluble chitosan, we have fabricated novel chitosan materials including filaments, aerogels, microspheres, and plastics that are promising for sustainable use.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...