Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Stem Cell Reports ; 13(1): 76-90, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31155503

RESUMEN

Hematopoietic stem and progenitor cells (HSPCs) depend on regulatory cytokines from the marrow microenvironment. From an unbiased cytokine screen of murine marrow supernatants, we identified C-C motif chemokine ligand 5 (CCL5) as an endothelial cell-secreted hematopoietic growth factor. Following treatment with CCL5, hematopoietic regeneration is accelerated and survival is prolonged after radiation. In mice with deletion of Ccr5, hematopoietic regeneration is delayed compared to control mice. Deletion of Ccr5 specifically in hematopoietic cells was sufficient to delay regeneration, while the deletion of Ccr5 in stromal/endothelial cells was not. Mechanistically, CCL5 promotes hematopoietic cell cycling and cell survival. Like murine hematopoietic cells, human hematopoietic cells (cord blood, healthy marrow, and peripheral blood) increase CCR5 expression after radiation exposure to promote cell survival. These data establish that CCL5 and CCR5 signaling play critical roles in hematopoietic regeneration and could serve as therapeutic targets to shorten the duration of myelosuppression.


Asunto(s)
Hematopoyesis/efectos de la radiación , Células Madre Hematopoyéticas/metabolismo , Radiación Ionizante , Receptores CCR5/metabolismo , Transducción de Señal , Animales , Médula Ósea/metabolismo , Médula Ósea/patología , Médula Ósea/efectos de la radiación , Ciclo Celular/genética , Ciclo Celular/efectos de la radiación , Supervivencia Celular/genética , Supervivencia Celular/efectos de la radiación , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Relación Dosis-Respuesta en la Radiación , Expresión Génica , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/efectos de la radiación , Humanos , Inmunofenotipificación , Ratones , Receptores CCR5/genética , Transducción de Señal/efectos de la radiación
3.
Mol Biol Cell ; 30(16): 2076-2086, 2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-30995155

RESUMEN

The linker of the nucleoskeleton and cytoskeleton (LINC) complex is formed by the conserved interactions between Sad-1 and UNC-84 (SUN) and Klarsicht, ANC-1, SYNE homology (KASH) domain proteins, providing a physical coupling between the nucleoskeleton and cytoskeleton that mediates the transfer of physical forces across the nuclear envelope. The LINC complex can perform distinct cellular functions by pairing various KASH domain proteins with the same SUN domain protein. For example, in Caenorhabditis elegans, SUN protein UNC-84 binds to two KASH proteins UNC-83 and ANC-1 to mediate nuclear migration and anchorage, respectively. In addition to distinct cytoplasmic domains, the luminal KASH domain also varies among KASH domain proteins of distinct functions. In this study, we combined in vivo C. elegans genetics and in silico molecular dynamics simulations to understand the relation between the length and amino acid composition of the luminal KASH domain, and the function of the SUN-KASH complex. We show that longer KASH domains can withstand and transfer higher forces and interact with the membrane through a conserved membrane proximal EEDY domain that is unique to longer KASH domains. In agreement with our models, our in vivo results show that swapping the KASH domains of ANC-1 and UNC-83, or shortening the KASH domain of ANC-1, both result in a nuclear anchorage defect in C. elegans.


Asunto(s)
Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Fenómenos Biomecánicos , Caenorhabditis elegans/metabolismo , Membrana Celular/metabolismo , Secuencia Conservada , Humanos , Membrana Nuclear/metabolismo , Dominios Proteicos , Relación Estructura-Actividad
4.
Cell Rep ; 25(11): 3074-3085.e5, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30540940

RESUMEN

Intratumoral (IT) STING activation results in tumor regression in preclinical models, yet factors dictating the balance between innate and adaptive anti-tumor immunity are unclear. Here, clinical candidate STING agonist ADU-S100 (S100) is used in an IT dosing regimen optimized for adaptive immunity to uncover requirements for a T cell-driven response compatible with checkpoint inhibitors (CPIs). In contrast to high-dose tumor ablative regimens that result in systemic S100 distribution, low-dose immunogenic regimens induce local activation of tumor-specific CD8+ effector T cells that are responsible for durable anti-tumor immunity and can be enhanced with CPIs. Both hematopoietic cell STING expression and signaling through IFNAR are required for tumor-specific T cell activation, and in the context of optimized T cell responses, TNFα is dispensable for tumor control. In a poorly immunogenic model, S100 combined with CPIs generates a survival benefit and durable protection. These results provide fundamental mechanistic insights into STING-induced anti-tumor immunity.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Inmunidad , Proteínas de la Membrana/metabolismo , Neoplasias/inmunología , Animales , Antígeno CTLA-4/metabolismo , Línea Celular Tumoral , Citocinas/metabolismo , Relación Dosis-Respuesta Inmunológica , Resistencia a Antineoplásicos , Hematopoyesis , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neoplasias/patología , Receptor de Muerte Celular Programada 1/metabolismo , Proteínas S100/administración & dosificación , Proteínas S100/inmunología
5.
Mol Biol Cell ; 29(16): 2012-2023, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-29995584

RESUMEN

Linkers of the nucleoskeleton and cytoskeleton are key molecular complexes that span the nuclear envelope (NE) and provide a direct linkage between the nucleoskeleton and cytoskeleton. Two major components of these complexes are members of the SUN and KASH protein families that interact in the perinuclear space to allow the transmission of mechanochemical signals across the NE. Structural details of the mammalian SUN domain protein SUN2 have established that SUN2 must form a trimer to bind to KASH, and that this trimerization is mediated through two predicted coiled-coil regions of the protein, CC1 and CC2, which precede the SUN domain. Recent crystallographic data suggest that CC2-SUN formed an unexpected autoinhibited monomer unable to bind to KASH. These structural insights raise the question of how full-length SUN2 transitions from a monomer to a trimer inside the NE. In this study we used a computational approach to model a fragment of SUN2 containing CC1, CC2, and the SUN domain. We observed the dynamics of these modeled structures using ∼1 µs molecular dynamics simulations and showed that the interplay between CC1 and CC2 may be sufficient for the release of CC2-SUN2 from its autoinhibited state. Additionally, using our models and gel filtration analysis, we show the involvement of an E452 residue on CC1 in the monomer--trimer transition of SUN2. Intriguingly, mutations in this residue have been seen in muscular dystrophy-associated SUN2 variants. Finally, we propose a Ca2+-dependent monomer-trimer transition of SUN2.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , Péptidos y Proteínas de Señalización Intracelular/química , Iones , Proteínas de la Membrana/química , Ratones , Modelos Biológicos , Simulación de Dinámica Molecular , Mutación/genética , Membrana Nuclear/metabolismo , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Proteínas de Unión a Telómeros/química
6.
Biophys J ; 114(5): 1190-1203, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29539404

RESUMEN

The LINC complex is found in a wide variety of organisms and is formed by the transluminal interaction between outer- and inner-nuclear-membrane KASH and SUN proteins, respectively. Most extensively studied are SUN1 and SUN2 proteins, which are widely expressed in mammals. Although SUN1 and SUN2 play functionally redundant roles in several cellular processes, more recent studies have revealed diverse and distinct functions for SUN1. While several recent in vitro structural studies have revealed the molecular details of various fragments of SUN2, no such structural information is available for SUN1. Herein, we conduct a systematic analysis of the molecular relationships between SUN1 and SUN2, highlighting key similarities and differences that could lead to clues into their distinct functions. We use a wide range of computational tools, including multiple sequence alignments, homology modeling, molecular docking, and molecular dynamic simulations, to predict structural differences between SUN1 and SUN2, with the goal of understanding the molecular mechanisms underlying SUN1 oligomerization in the nuclear envelope. Our simulations suggest that the structural model of SUN1 is stable in a trimeric state and that SUN1 trimers can associate through their SUN domains to form lateral complexes. We also ask whether SUN1 could adopt an inactive monomeric conformation as seen in SUN2. Our results imply that the KASH binding domain of SUN1 is also inhibited in monomeric SUN1 but through weaker interactions than in monomeric SUN2.


Asunto(s)
Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Multimerización de Proteína , Secuencia de Aminoácidos , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Simulación de Dinámica Molecular , Dominios Proteicos , Estructura Cuaternaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...