Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Int J Radiat Oncol Biol Phys ; 118(2): 404-414, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37652301

RESUMEN

PURPOSE: Radiation therapy is part of the standard treatment regimen for non-small cell lung cancer (NSCLC). Although radiation therapy is an effective tool to manage NSCLC, it can be associated with significant dose-limiting toxicities. These toxicities can lead to treatment interruption or early termination and worsening clinical outcomes in addition to reductions in patient quality of life. Based on preclinical efficacy for radioprotection of normal tissues, we evaluated the clinical utility of BIO 300 Oral Suspension (BIO 300; synthetic genistein nanosuspension) in patients with NSCLC. METHODS AND MATERIALS: In this multicenter, open-label, single-arm, ascending dose phase 1b/2a study, patients were enrolled with newly diagnosed stage II-IV NSCLC planned for 60 to 70/1.8-2.0 Gy radiation therapy and concurrent weekly paclitaxel/carboplatin. Oral BIO 300 (cohort 1, 500 mg/d; cohort 2, 1000 mg/d; cohort 3, 1500 mg/d) was self-administered once daily starting 2 to 7 days before initiating concurrent chemoradiotherapy and continued until the end of radiation therapy. The primary endpoint was acute dose-limiting toxicities attributable to BIO 300. Secondary outcomes included pharmacokinetics, pharmacodynamics, overall toxicity profile, quality of life, local response rate, and survival. RESULTS: Twenty-one participants were enrolled. No dose-limiting toxicities were reported. BIO 300 dosing did not alter chemotherapy pharmacokinetics. Adverse events were not dose-dependent, and those attributable to BIO 300 (n = 11) were all mild to moderate in severity (grade 1, n = 9; grade 2, n = 2) and predominantly gastrointestinal (n = 7). A dose-dependent decrease in serum transforming growth factor ß1 levels was observed across cohorts. Based on safety analysis, the maximum tolerated dose of BIO 300 was not met. Patient-reported quality of life and weight were largely stable throughout the study period. No patient had progression as their best overall response, and a 65% tumor response rate was achieved (20% complete response rate). CONCLUSIONS: The low toxicity rates, along with the pharmacodynamic results and tumor response rates, support further investigation of BIO 300 as an effective radioprotector.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Calidad de Vida , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Quimioradioterapia/efectos adversos , Quimioradioterapia/métodos , Carboplatino , Paclitaxel
3.
Radiat Res ; 197(5): 447-458, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35119453

RESUMEN

BIO 300, a suspension of synthetic genistein nanoparticles, is being developed for mitigating the delayed effects of acute radiation exposure (DEARE). The purpose of the current study was to characterize the pharmacokinetic (PK) profile of BIO 300 administered as an oral or parenteral formulation 24 h after sham-irradiation, total-body irradiation (TBI) with 2.5-5.0% bone marrow sparing (TBI/BMx), or in nonirradiated sex-matched C57BL/6J mice and non-human primates (NHP). C57BL/6J mice were randomized to the following arms in two consecutive studies: sham-TBI [400 mg/kg, oral gavage (OG)], TBI/BM2.5 (400 mg/kg, OG), sham-TBI [200 mg/kg, subcutaneous (SC) injection], TBI/BM2.5 (200 mg/kg, SC), sham-TBI (100 mg/kg, SC), or nonirradiated [200 mg/kg, intramuscular (IM) injection]. The PK profile was also established in NHP exposed to TBI/BM5.0 (100 mg/kg, BID, OG). Genistein-aglycone serum concentrations were measured in all groups using a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay. The PK profile demonstrates 11% and 19% reductions in Cmax and AUC0-inf, respectively, among mice administered 400 mg/kg, OG, after TBI/BM2.5 compared to the sham-TBI control arm. Administration of 200 mg/kg SC in mice exposed to TBI/BM2.5 showed a 53% increase in AUC0-inf but a 28% reduction in Cmax compared to the sham-TBI mice. The relative bioavailability of the OG route compared to the SC and IM routes in mice was 9% and 7%, respectively. After the OG route, the dose-normalized AUC0-inf was 13.37 (ng.h/mL)/(mg/kg) in TBI/BM2.5 mice compared to 6.95 (ng.h/mL)/(mg/kg) in TBI/BM5.0 NHPs. Linear regression of apparent clearances and weights of mice and NHPs yielded an allometric coefficient of 1.06. Based on these data, the effect of TBI/BMx on BIO 300 PK is considered minimal. Future studies should use SC and IM routes to maximize drug exposure when administered postirradiation. The allometric coefficient is useful in predicting therapeutic drug dose regimens across species for drug approval under the FDA animal rule.


Asunto(s)
Genisteína , Espectrometría de Masas en Tándem , Animales , Cromatografía Liquida , Ratones , Ratones Endogámicos C57BL , Primates
4.
Radiat Res ; 197(3): 209-217, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34860238

RESUMEN

Cell line misidentification and contamination are major contributors to the reproducibility crisis in academic research. Authentication of cell lines provides assurances of the data generated; however, commercially available cells are often not subjected to rigorous identification testing. In this study, commercially available cell lines underwent testing to confirm cell identity and purity. The methods reported here outline the best practices for cell line authentication. Briefly, a commercially available primary rabbit aortic endothelial cell line was purchased for the intent of producing target proteins necessary for generating species-specific recombinant antibodies. These rabbit-specific antibodies would then be utilized for the development of in-house enzyme-linked immunosorbent assays (ELISA) to evaluate blood-based biomarkers of vascular injury after total-body irradiation. To authenticate the cell line, cell identity and purity were determined by single tandem repeat (STR) testing, flow cytometry, polymerase chain reaction (PCR), and cytochrome c oxidase subunit 1 (CO1) DNA Barcoding in-house and/or through commercial vendors. Fresh cells obtained from a New Zealand White rabbit (Charles River, Wilmington, DE) were used as a positive control. The results of STR and flow cytometry analyses indicated the cells were not contaminated with human or mouse cells, and that the cells were not of endothelial origin. PCR demonstrated that cells were also not of rabbit origin, which was further confirmed by a third-party vendor. An unopened vial of cells was submitted to another vendor for CO1 DNA Barcoding analysis, which identified the cells as being purely of bovine origin. Results revealed that despite purchase through a commercial vendor, the cell line marketed as primary rabbit aortic endothelial cells were of bovine origin. Purity analysis found cells were misidentified rather than contaminated. Further investigation to determine the cell type was not performed. The most cost-effective and efficient methodology for confirming cell line identity was found to be CO1 DNA Barcoding performed by a commercial vendor.


Asunto(s)
ADN , Células Endoteliales , Animales , Bovinos , Línea Celular , Ratones , Reacción en Cadena de la Polimerasa , Conejos , Reproducibilidad de los Resultados
5.
Cancers (Basel) ; 13(23)2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34885223

RESUMEN

BACKGROUND: Chordoma is a cancer of spinal cord, skull base, and sacral area. Currently, the standard of care to treat chordoma is resection followed by radiation therapy. Since, chordoma is present in the spinal cord and these are very sensitive structures and often complete removal by surgery is not possible. As a result, chordoma has a high chance of recurrence and developing resistance to radiation therapy. In addition, treatment of chordoma by conventional radiation therapy can also damage normal tissues surrounding chordoma. Thus, current therapeutic options to treat chordoma are insufficient and novel therapies are desperately needed to treat locally advanced and metastatic chordoma. (2) Methods: In the present investigation, human chordoma cell lines of sacral origin MUG-Chor1 and U-CH2 were cultured and irradiated with Proton Beam Radiation using the clinical superconducting cyclotron and pencil-beam (active) scanning at Middle and End of the Spread-Out Bragg Peak (SOBP). Proton radiation was given at the following doses: Mug-Chor1 at 0, 1, 2, 4, and 8 Gy and U-CH2 at 0, 4, 8, 12, and 16 Gy. These doses were selected based on a pilot study in our lab and attempted to produce approximate survival fractions in the range of 1, 0.9, 0.5, 0.1, and 0.01, respectively, chosen for linear quadratic model fitting of the dose response. (3) Results: In this study, we investigated relative biological effectiveness (RBE) of proton radiation at the end of Spread Out Bragg Peak assuming that the reference radiation is a proton radiation in the middle of the SOBP. We observed differences in the survival of both Human chordoma cell lines, U-CH2 and MUG-Chor1. The data showed that there was a significantly higher cell death at the end of the Bragg peak as compared to middle of the Bragg peak. Based on the linear quadratic (LQ) fit for cell survival we calculated the RBE between M-SOBP and E-SOBP at 95% CI level and it was observed that RBE was higher than 1 at E-SOBP and caused significantly higher cell killing. Proton field at E-SOBP caused complex DNA damage in comparison to M-EOBP and the genes such as DNA topoisomerase 1, GTSE1, RAD51B were downregulated in E-SOBP treated cells. Thus, we conclude that there seems to be substantial variation in RBE (1.3-1.7) at the E-SOBP compared with the M-SOBP.

6.
PLoS One ; 16(11): e0258951, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34762666

RESUMEN

Radiation therapy plays a major role in the treatment of lung cancer patients. However, cancer cells develop resistance to radiation. Tumor radioresistance is a complex multifactorial mechanism which may be dependent on DNA damage and repair, hypoxic conditions inside tumor microenvironment, and the clonal selection of radioresistant cells from the heterogeneous tumor site, and it is a major cause of treatment failure in non-small cell lung cancer (NSCLC). In the present investigation caveolin-1 (CAV-1) has been observed to be highly expressed in radiation resistant A549 lung cancer cells. CRISPR-Cas9 knockout of CAV-1 reverted the cells to a radio sensitive phenotype. In addition, CAV-1 overexpression in parental A549 cells, led to radiation resistance. Further, gene expression analysis of A549 parental, radiation resistant, and caveolin-1 overexpressed cells, exhibited overexpression of DNA repair genes RAD51B, RAD18, SOX2 cancer stem cell marker, MMPs, mucins and cytoskeleton proteins in resistant and caveolin-1 over expressed A549 cells, as compared to parental A549 cells. Bioinformatic analysis shows upregulation of BRCA1, Nuclear Excision DNA repair, TGFB and JAK/STAT signaling pathways in radioresistant and caveolin-1 overexpressed cells, which may functionally mediate radiation resistance. Immunohistochemistry data demonstrated heterogeneous expression of CAV-1 gene in human lung cancer tissues, which was analogous to its enhanced expression in human lung cancer cell line model and mouse orthotopic xenograft lung cancer model. Also, TCGA PanCancer clinical studies have demonstrated amplification, deletions and missense mutation in CAV-1 gene in lung cancer patients, and that CAV-1 alteration has been linked to poor prognosis, and poor survival in lung cancer patients. Interestingly, we have also optimized ELISA assay to measure caveolin-1 protein in the blood of A549 radiation resistant human xenograft preclinical mouse model and discovered higher level of caveolin-1 (950 pg/ml) in tumor bearing animals treated with radiation, as compared to xenograft with radiosensitive lung cancer cells (450 pg/ml). Thus, we conclude that caveolin-1 is involved in radio-resistance and contributes to tumor aggression, and it has potential to be used as prognostic biomarker for radiation treatment response, and tumor progression for precision medicine in lung cancer patients.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Caveolina 1/metabolismo , Neoplasias Pulmonares/patología , Tolerancia a Radiación , Células A549 , Animales , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Caveolina 1/genética , Reparación del ADN/genética , Dosificación de Gen , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Ratones Endogámicos BALB C , Ratones Desnudos , Análisis por Micromatrices , Invasividad Neoplásica , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Pronóstico , Mapas de Interacción de Proteínas/genética , Regulación hacia Arriba/genética , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Int J Radiat Biol ; 97(12): 1675-1686, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34495790

RESUMEN

PURPOSE: Chordoma is a locally aggressive tumor that most commonly affects the base of the skull/clivus, cervical, and sacral spine. Conventional radiotherapy (RT), cannot be safely increased further to improve disease control due to the risk of toxicity to the surrounding critical structures. Tumor-targeted hyperthermia (HT) combined with Proton Beam Radiation Therapy (PBRT) is known to act as a potent radiosensitizer in cancer control. In this study, we investigated whether PBRT efficacy for chordoma can be enhanced in combination with HT as a radiosensitizer. MATERIAL AND METHODS: Human chordoma cell lines, U-CH2 and Mug-chor1 were treated in vitro with HT followed by PBRT with variable doses. The colony-forming assay was performed, and dose-response was characterized by linear-quadratic model fits. HSP-70 and Brachyury (TBXT) biomarkers for chordoma aggression levels were quantified by western blot analysis. Gene microarray analysis was performed by U133 Arrays. Pathway Analysis was also performed using IPA bioinformatic software. RESULTS: Our findings in both U-CH2 and Mug-Chor1 cell lines demonstrate that hyperthermia followed by PBRT has an enhanced cell killing effect when compared with PBRT-alone (p < .01). Western blot analysis showed HT decreased the expression of Brachyury protein (p < .05), which is considered a biomarker for chordoma tumor aggression. HT with PBRT also exhibited an RT-dose-dependent decrease of Brachyury expression (p < .05). We also observed enhanced HSP-70 expression due to HT, RT, and HT + RT combined in both cell lines. Interestingly, genomic data showed 344 genes expressed by the treatment of HT + RT compared to HT (68 genes) or RT (112 genes) as individual treatment. We also identified activation of death receptor and apoptotic pathway in HT + RT treated cells. CONCLUSION: We found that Hyperthermia (HT) combined with Proton Beam Radiation (PBRT) could significantly increase chordoma cell death by activating the death receptor pathway and apoptosis which has the promise to treat metastatic chordoma.


Asunto(s)
Cordoma , Hipertermia Inducida , Terapia de Protones , Fármacos Sensibilizantes a Radiaciones , Apoptosis , Cordoma/radioterapia , Humanos , Protones , Receptores de Muerte Celular
8.
Int J Radiat Biol ; 97(sup1): S19-S31, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-31526203

RESUMEN

PURPOSE: The purpose if this study was to develop a rabbit model of total body irradiation (TBI) -induced thrombocytopenia and coagulopathy across the dose-range which induces the hematopoietic subsyndrome of the acute radiation syndrome (H-ARS). METHODS: Twenty male New Zealand White rabbits were assigned to arms to receive 6-MV of TBI at a dose of 6.5, 7.5, 8.5 or 9.5 Gy. Animals were treated with moderate levels of supportive care including buprenorphine for pain management, antibiotics, antipyretics for rectal body temperature >104.8 °F, and fluids for signs of dehydration. Animals were closelyfollowed for up to 45 days after TBI for signs of major morbidity/mortality. Hematology and serum chemistry parameters were routinely monitored. Hemostasis parameters were analyzed prior to TBI, 2 and 6 hours post-TBI, and at the time of euthanasia. RESULTS: Animals developed the characteristic signs and symptoms of H-ARS during the first-week post TBI. Animals became thrombocytopenic with signs of severe acute anemia during the second week post TBI. Moribund animals presented with petechia and ecchymosis of the skin and generalized internal hemorrhage. Multiorgan dysfunction characterized by bone marrow failure, gastric ileus, acute renal toxicity, and liver abnormalities were common. Severe abnormalities in coagulation parameters were observed. CONCLUSIONS: The presentation of bone marrow failure and multiorogan injury associated with ARS in the New Zealand White rabbit model is consistent with that described in the canine, swine, non-human primate, and in humans. The hemorrhagic syndrome associated with the ARS in rabbits is characterized by thrombocytopenia and hemostasis dysfunction, which appear to underlie the development of multiorgan dysfunction following TBI to rabbits. Taken together, the rabbit recapitulates the pathogenesis of ARS in humans, and may present an alternative small animal model for medical countermeasure pilot efficacy screening, dose-finding and schedule optimization studies prior to moving into large animal models of TBI-induced ARS.


Asunto(s)
Síndrome de Radiación Aguda , Anemia , Trombocitopenia , Síndrome de Radiación Aguda/etiología , Anemia/complicaciones , Animales , Trastornos de Fallo de la Médula Ósea , Perros , Masculino , Conejos , Porcinos , Trombocitopenia/etiología , Irradiación Corporal Total/efectos adversos
9.
Int J Radiat Biol ; 97(sup1): S32-S44, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32909880

RESUMEN

PURPOSE: The hemorrhagic syndrome is a major cause of morbidity and mortality associated with the acute radiation syndrome (ARS). We previously characterized the dose-response relationship for total body irradiation (TBI)-induced ARS in the New Zealand White (NZW) rabbit. Thrombocytopenia, hemorrhage, and anemia were strongly associated with morbidity/mortality during the first three weeks post-TBI. The objective of the current study was to further characterize the natural history of thrombocytopenia, hemostatic dysfunction and hemorrhage in the rabbit model at a TBI dose range to induce ARS. METHODS: Fifty male NZW rabbits were randomized to receive 7.0 or 7.5 Gy of 6 MV-derived TBI. Sham-irradiated controls (n = 6) were included as a comparator. Animals were treated with minimal supportive care including pain medication, antibiotics, antipyretics for temperature >104.8 °F, and fluids for signs of dehydration. Animals were culled at pre-determined timepoints post-TBI, or for signs of imminent mortality based on pre-defined euthanasia criteria. Hematology parameters, serum chemistry, viscoelasticity of whole blood, coagulation tests, and coagulation factor activities were measured. A gross exam of vital organs was performed at necropsy. RESULTS: Findings in this study include severe neutropenia during the first week post-TBI followed by thrombocytopenia and severe acute anemia with petechial hemorrhages of the skin and hemorrhage of the vital organs during the second to third weeks post-TBI. Abnormalities in whole blood viscoelastometry were observed concurrent with thrombocytopenia and hemorrhage. Antithrombin activity was significantly elevated in animals after exposure to 7.5 Gy, but not 7.0 Gy TBI. CONCLUSIONS: The hemorrhagic syndrome in the rabbit model of TBI recapitulates the pathogenesis described in humans following accidental or deliberate exposures. The rabbit may present an alternative to the rodent model as a small animal species for characterization of the full spectrum of multiorgan injury following TBI and early testing of promising medical countermeasures.


Asunto(s)
Síndrome de Radiación Aguda , Trombocitopenia , Síndrome de Radiación Aguda/patología , Animales , Hemorragia/etiología , Masculino , Contramedidas Médicas , Conejos , Trombocitopenia/etiología , Irradiación Corporal Total/efectos adversos
10.
Int J Radiat Biol ; 97(sup1): S10-S18, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32924716

RESUMEN

PURPOSE: Well-controlled ionizing radiation injury animal models for testing medical countermeasure efficacy require robust radiation physics and dosimetry to ensure accuracy of dose-delivery and reproducibility of the radiation dose-response relationship. The objective of this study was to establish a simple, convenient, robust and accurate technique for validating total body irradiation (TBI) exposure of the New Zealand White rabbit. METHODS: We use radiotherapy techniques such as computed tomography simulation and a 3 D-conformal radiation therapy treatment planning system (TPS) on three animals to comprehensively design and preplan a TBI technique for rabbits. We evaluate the requirement for bolus, treatment geometry, bilateral vs anterior-posterior treatment delivery, the agreement between monitor units calculated using the TPS vs a traditional hand calculation to the mid-plane, and resulting individual organ doses. RESULTS: The optimal technique irradiates animals on the left-decubitus position using two isocentric bilateral parallel-opposed 6 MV x-ray beams. Placement of a 5 mm bolus and 8.5 mm beam spoiler was shown to increase the dose to within ≤5 mm of the surface, improving dose homogeneity throughout the body of the rabbit. A simple hand calculation formalism, dependent only on mid-abdominal separation, could be used to calculate the number of monitor units (MUs) required to accurately deliver the prescribed dose to the animal. For the representative animal, the total body volume receiving > 95% of the dose, V95% > 99%, V100% > 95%, and V107% < 20%. The area of the body receiving >107% of the prescribed dose was mainly within the limbs, head, and around the lungs of the animal, where the smaller animal width reduces the x-ray attenuation. Individual organs were contoured by an experienced dosimetrist, and each received doses within 95-107% of the intended dose, with mean values ∼104%. Only the bronchus showed a maximal dose >107% (113%) due to the decreased attenuation of the lungs. To validate the technique, twenty animals were irradiated with four optically-stimulated luminescence dosimeters (OSLDs) placed on the surface of each animal (two on each side in the center of the radiation beam). The average dose over all animals was within <0.1% from intended values, with no animal receiving an average dose more than ±3.1% from prescription. CONCLUSION: The TBI technique developed in this pilot study was successfully used to establish the dose-response relationship for 45-day lethality across the dose-range to induce the hematopoietic-subsyndrome of the acute radiation syndrome (ARS).


Asunto(s)
Radiometría , Irradiación Corporal Total , Animales , Fantasmas de Imagen , Proyectos Piloto , Conejos , Radiometría/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Reproducibilidad de los Resultados , Tomografía Computarizada por Rayos X
11.
Radiat Res ; 194(5): 544-556, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33045066

RESUMEN

Animal models of total-body irradiation (TBI) are used to elucidate normal tissue damage and evaluate the efficacy of medical countermeasures (MCM). The accuracy of these TBI models depends on the reproducibility of the radiation dose-response relationship for lethality, which in turn is highly dependent on robust radiation physics and dosimetry. However, the precise levels of radiation each organ absorbs can change dramatically when different photon beam qualities are used, due to the interplay between their penetration and the natural variation of animal sizes and geometries. In this study, we evaluate the effect of varying the radiation energy, namely cobalt-60 (Co-60); of similar penetration to a 4-MV polyenergetic beam), 6 MV and 15 MV, in the absorbed dose delivered by TBI to individual organs of eight Göttingen minipigs of varying weights (10.3-24.1 kg) and dimensions (17.5-25 cm width). The main organs, i.e. heart, lungs, esophagus, stomach, bowels, liver, kidneys and bladder, were contoured by an experienced radiation oncologist, and the volumetric radiation dose distribution was calculated using a commercial treatment planning system commissioned and validated for Co-60, 6-MV and 15-MV teletherapy units. The dose is normalized to the intended prescription at midline in the abdomen. For each animal and each energy, the body and organ dose volume histograms (DVHs) were computed. The results show that more penetrating photon energies produce dose distributions that are systematically and consistently more homogeneous and more uniform, both within individual organs and between different organs, across all animals. Thoracic organs (lungs, heart) received higher dose than prescribed while pelvic organs (bowel, bladder) received less dose than prescribed, due to smaller and wider separations, respectively. While these trends were slightly more pronounced in the smallest animals (10.3 kg, 19 cm abdominal width) and largest animals (>20 kg, ∼25 cm abdominal width), they were observed in all animals, including those in the 9-15 kg range typically used in MCM models. Some organs received an average absorbed dose representing <80% of prescribed dose when Co-60 was used, whereas all organs received average doses of >87% and >93% when 6 and 15 MV were used, respectively. Similarly, average dose to the thoracic organs reached as high as 125% of the intended dose with Co-60, compared to 115% for 15 MV. These results indicate that Co-60 consistently produces less uniform dose distributions in the Göttingen minipig compared to 6 and 15 MV. Moreover, heterogeneity of dose distributions for Co-60 is accentuated by anatomical and geometrical variations across various animals, leading to different absorbed dose delivered to organs for different animals. This difference in absorbed radiation organ doses, likely caused by the lower penetration of Co-60 and 6 MV compared to 15 MV, could potentially lead to different biological outcomes. While the link between the dose distribution and variation of biological outcome in the Göttingen minipig has never been explicitly studied, more pronounced dose heterogeneity within and between organs treated with Co-60 teletherapy units represents an additional confounding factor which can be easily mitigated by using a more penetrating energy.


Asunto(s)
Relación Dosis-Respuesta en la Radiación , Porcinos Enanos , Irradiación Corporal Total , Abdomen/anatomía & histología , Abdomen/efectos de la radiación , Absorción de Radiación , Animales , Tamaño Corporal , Peso Corporal , Radioisótopos de Cobalto , Rayos gamma , Masculino , Modelos Animales , Especificidad de Órganos , Aceleradores de Partículas , Pelvis/anatomía & histología , Pelvis/efectos de la radiación , Fotones , Posición Prona , Dosis de Radiación , Tolerancia a Radiación , Teleterapia por Radioisótopo/instrumentación , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Alta Energía/instrumentación , Hombro/anatomía & histología , Hombro/efectos de la radiación , Porcinos , Porcinos Enanos/anatomía & histología , Tomografía Computarizada por Rayos X
12.
Radiother Oncol ; 150: 174-180, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32565390

RESUMEN

OBJECTIVES: Prostate cancer (PCa) treatment with radiation therapy (RT) has an excellent cure rate. However, Radiation-induced Erectile Dysfunction (RiED) is a common and irreversible toxicity impacting quality of life, and there is no FDA approved specific drug for RiED. We previously showed that prostate RT increased RhoA/ROCK signaling in the cavernous nerve (CN) and penile tissues, which may lead to RiED in rats. In this study, we investigated whether RhoA/ROCK pathway inhibition by a specific inhibitor called Hydroxyfasudil (HF) can improve RiED in our well-established rat model. MATERIALS/METHODS: Male Sprague-Dawley rats were randomized to the following groups: sham-RT, HF-only, RT-only, and RT + HF. Rats were either exposed to a single dose of 25 Gy prostate-confined RT or a sham procedure. 10 mg/kg HF or normal saline was injected intraperitoneally. Erectile function was evaluated by intracavernosal pressure (ICP) and mean arterial pressure (MAP) measurements at week 14 post-RT. Cavernous nerve (CN) injury was evaluated by transmission electron microscopy (TEM), and penile tissue fibrosis by Masson trichrome staining (MT). RESULTS: We have found that the HF treatment prior to RT showed significant (p < 0.001) improvement in ICP/MAP ratio, area under the curve, and maximum ICP value, compared to RT-alone rats. Furthermore, RT + HF treated rats exhibited increased CN myelination and decreased axonal atrophy, comparted to RT-only. HF treatment showed significantly decreased penile tissue fibrosis (p < 0.05) compared to RT-alone treated rats. CONCLUSION: Our results provide the first preclinical evidence that targeting RhoA/ROCK pathway by HF may provide a novel therapeutic option for the treatment of RiED.


Asunto(s)
Disfunción Eréctil , Animales , Modelos Animales de Enfermedad , Disfunción Eréctil/tratamiento farmacológico , Disfunción Eréctil/etiología , Humanos , Masculino , Erección Peniana , Pene , Calidad de Vida , Ratas , Ratas Sprague-Dawley , Proteína de Unión al GTP rhoA
13.
Acta Oncol ; 59(10): 1186-1192, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32500780

RESUMEN

PURPOSE: Pelvic target dose from intensity-modulated proton therapy (IMPT) is sensitive to patient bowel motion. Robustly optimized plans in regard to bowel filling may improve the dose coverage in the treatment course. Our purpose is to investigate the effect of air volume in large and small bowel and rectum on target dose from IMPT plans. METHODS AND MATERIAL: Data from 17 cancer patients (11 prostate, 3 gynecologic, 2 colon, and 1 embryonal rhabdomyosarcoma) with planning CT (pCT) and weekly or biweekly scanned quality assurance CTs (QACTs; 82 QACT scans total) were studied. Air in bowels and rectum traversed by proton pencil beams was contoured. The robust treatment plan was made by using 3 CT sets: the pCT set and 2 virtual CT sets that were copies of pCT but in which the fillings of bowels and rectum were overridden to be either air or muscle. Each plan had 2-5 beams with a mean of 3 beams. Targets in the pCT were mapped to the QACTs by deformable image registration, and the dose in QACTs was calculated. Dose coverage (D99 and D95) and correlations between dose coverage and changes in air volume were analyzed. The significance of the correlation was analyzed by t test. RESULTS: Mean changes of D99 in QACTs were within 3% of those in the pCT for all prostate and colon cases but >3% in 2 of the 3 gynecologic cases and in the embryonal rhabdomyosarcoma case. Of these three cases with mean change of D99 > 3%, air volume may be the main cause in 2. For the prostate cases, correlation coefficients were <0.7 between change in air volume and change in D99 and D95, because other anatomy changes also contributed to dose deviation. Correlation coefficients in the non-prostate cases were >0.9 between D99 change and rectum and between D95 change and small bowel, indicating a greater effect of the air volume on target dose. CONCLUSION: The air volume may still have an important effect on target dose coverage in treatment plans using 3 CT sets, particularly when the air is traversed by multiple beams.


Asunto(s)
Aire , Intestino Grueso/fisiopatología , Neoplasias/radioterapia , Terapia de Protones , Radioterapia de Intensidad Modulada , Recto/fisiopatología , Humanos , Órganos en Riesgo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
14.
Metabolites ; 10(6)2020 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-32575772

RESUMEN

A large-scale nuclear event has the ability to inflict mass casualties requiring point-of-care and laboratory-based diagnostic and prognostic biomarkers to inform victim triage and appropriate medical intervention. Extensive progress has been made to develop post-exposure point-of-care biodosimetry assays and to identify biomarkers that may be used in early phase testing to predict the course of the disease. Screening for biomarkers has recently extended to identify specific metabolomic and lipidomic responses to radiation using animal models. The objective of this review was to determine which metabolites or lipids most frequently experienced perturbations post-ionizing irradiation (IR) in preclinical studies using animal models of acute radiation sickness (ARS) and delayed effects of acute radiation exposure (DEARE). Upon review of approximately 65 manuscripts published in the peer-reviewed literature, the most frequently referenced metabolites showing clear changes in IR induced injury were found to be citrulline, citric acid, creatine, taurine, carnitine, xanthine, creatinine, hypoxanthine, uric acid, and threonine. Each metabolite was evaluated by specific study parameters to determine whether trends were in agreement across several studies. A select few show agreement across variable animal models, IR doses and timepoints, indicating that they may be ubiquitous and appropriate for use in diagnostic or prognostic biomarker panels.

15.
Cancers (Basel) ; 12(4)2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32326142

RESUMEN

BACKGROUND: Pancreatic cancer (PC) is the fourth-most-deadly cancer in the United States with a 5-year survival rate of only 8%. Unfortunately, only 10-20% of PC patients are candidates for surgery, with the vast majority of patients with locally-advanced disease undergoing chemotherapy and/or radiation therapy (RT). Current treatments are clearly inadequate and novel strategies are crucially required. We investigated a novel tripartite treatment (combination of tumor targeted hyperthermia (HT), radiation therapy (RT), and immunotherapy (IT)) to alter immunosuppressive PC-tumor microenvironment (TME). (2). METHODS: In a syngeneic PC murine tumor model, HT was delivered before tumor-targeted RT, by a small animal radiation research platform (SARRP) followed by intraperitoneal injections of cytotoxic T-cell agonist antibody against OX40 (also known as CD134 or Tumor necrosis factor receptor superfamily member 4; TNFRSF4) that can promote T-effector cell activation and inhibit T-regulatory (T-reg) function. (3). RESULTS: Tripartite treatment demonstrated significant inhibition of tumor growth (p < 0.01) up to 45 days post-treatment with an increased survival rate compared to any monotherapy. Flow cytometric analysis showed a significant increase (p < 0.01) in cytotoxic CD8 and CD4+ T-cells in the TME of the tripartite treatment groups. There was no tripartite-treatment-related toxicity observed in mice. (4). CONCLUSIONS: Tripartite treatment could be a novel therapeutic option for PC patients.

16.
Radiother Oncol ; 146: 126-135, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32146258

RESUMEN

BACKGROUND AND PURPOSE: Patients with life-threatening illnesses, such as cancer, experience emotional distress. This study was to investigate the molecular and cellular mechanisms of relevant psychological stressor on tumor growth and therapeutic resistance. MATERIALS AND METHODS: Stress was induced in C57BL/6J mice bearing LLC lung tumors by exposure to a conspecific mice receiving inescapable foot shocks. Mice were irradiated at 7 Gy for 3 consecutive days. Behaviors were monitored by open field test (OFT), elevated plus maze (EPM), sucrose preference test (SPT), and learned helplessness (LH) test. Protein expression in tissues and cultured cells were measured by Western blot. RESULTS: This study in animals showed that observing a conspecific mouse receiving foot shocks induced depression like behaviors with increased plasma corticosterone and adrenaline levels which increased tumor growth and radioresistance. Stress increased Wnt1, Drosha, and vimentin expression and decreased E-cadherin expression in tumor tissues. The combination of stress and irradiation enhanced radioresistance along with the increase in vimentin expression. The in vitro study showed that a ß2-adrenergic receptor (ß2-AR) agonist blocked irradiation-induced cell apoptosis and decreased cell viability, while silencing ß2-AR expression reduced the protective effects of ß2-AR agonist. ß2-AR agonist obviously increased Wnt1 and Drosha expression in LLC-1 cells. CONCLUSION: Psychological stress increased tumor growth and enhanced radioresistance associated with the activation of epithelial-mesenchymal transition by stress hormone-stimulated adrenergic receptors.


Asunto(s)
Neoplasias Pulmonares , Estrés Psicológico , Animales , Apoptosis , Transición Epitelial-Mesenquimal , Humanos , Neoplasias Pulmonares/radioterapia , Ratones , Ratones Endogámicos C57BL
17.
Biotechnol Prog ; 36(3): e2970, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31989790

RESUMEN

Protein therapeutics, also known as biologics, are currently manufactured at centralized facilities according to rigorous protocols. The manufacturing process takes months and the delivery of the biological products needs a cold chain. This makes it less responsive to rapid changes in demand. Here, we report on technology application for on-demand biologics manufacturing (Bio-MOD) that can produce safe and effective biologics from cell-free systems at the point of care without the current challenges of long-term storage and cold-chain delivery. The objective of the current study is to establish proof-of-concept safety and efficacy of Bio-MOD-manufactured granulocyte colony-stimulating factor (G-CSF) in a mouse model of total body irradiation at a dose estimated to induce 30% lethality within the first 30 days postexposure. To illustrate on-demand Bio-MOD production feasibility, histidine-tagged G-CSF was manufactured daily under good manufacturing practice-like conditions prior to administration over a 16-day period. Bio-MOD-manufactured G-CSF improved 30-day survival when compared with saline alone (p = .073). In addition to accelerating recovery from neutropenia, the platelet and hemoglobin nadirs were significantly higher in G-CSF-treated animals compared with saline-treated animals (p < .05). The results of this study demonstrate the feasibility of consistently manufacturing safe and effective on-demand biologics suitable for real-time release.


Asunto(s)
Productos Biológicos/farmacología , Almacenaje de Medicamentos , Factor Estimulante de Colonias de Granulocitos/farmacología , Neutropenia/tratamiento farmacológico , Animales , Plaquetas/efectos de los fármacos , Sistema Libre de Células , Modelos Animales de Enfermedad , Factor Estimulante de Colonias de Granulocitos/biosíntesis , Hemoglobinas/efectos de los fármacos , Histidina/biosíntesis , Histidina/química , Humanos , Ratones , Neutropenia/sangre , Neutropenia/etiología , Neutropenia/patología , Irradiación Corporal Total/efectos adversos
18.
Int J Radiat Oncol Biol Phys ; 106(2): 243-252, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31288053

RESUMEN

PURPOSE: A large proportion of preclinical or translational studies using radiation have poor replicability. For a study involving radiation exposure to be replicable, interpretable, and comparable, its experimental methodology must be well reported, particularly in terms of irradiation protocol, including the amount, rate, quality, and geometry of radiation delivery. Here we perform the first large-scale literature review of the current state of reporting of essential experimental physics and dosimetry details in the scientific literature. METHODS AND MATERIALS: For 1758 peer-reviewed articles from 469 journals, we evaluated the reporting of basic experimental physics and dosimetry details recommended by the authoritative National Institute of Standards and Technology symposium. RESULTS: We demonstrate that although some physics and dosimetry parameters, such as dose, source type, and energy, are well reported, the majority are not. Furthermore, highly cited journals and articles are systematically more likely to be lacking experimental details related to the irradiation protocol. CONCLUSIONS: These findings show a crucial deficiency in the reporting of basic experimental details and severely affect the reproducibility and translatability of a large proportion of radiation biology studies.


Asunto(s)
Física , Radiobiología , Radiometría , Reproducibilidad de los Resultados , Bibliometría , Investigación Biomédica/estadística & datos numéricos , Congresos como Asunto , Humanos , Factor de Impacto de la Revista , Exposición a la Radiación , Dosificación Radioterapéutica , Estándares de Referencia , Factores de Tiempo , Investigación Biomédica Traslacional/estadística & datos numéricos
19.
Radiother Oncol ; 142: 43-51, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31431370

RESUMEN

High-grade gliomas (HGGs) are aggressive primary brain tumors that confer poor prognoses. Despite aggressive combined modality treatment, HGGs invariably recur. Considerable research efforts and resources have focused on identification of novel therapies for HGGs; however, standard treatments have not changed significantly in more than 10 years, since the introduction of concurrent chemoradiation therapy with temozolomide. Hyperthermia (HT) has been shown to enhance the efficacy of radiation treatment (RT) in numerous cancer types through multiple mechanisms, including impairment of DNA repair pathways, increased perfusion/oxygenation of tumors, and immune system activation. In the 1980s and 1990s, the combination of HT with external-beam RT and interstitial brachytherapy was extensively evaluated in HGG, culminating in a randomized controlled trial that demonstrated superior survival in patients receiving combined HT and RT. However, HT was not adopted into common practice for HGG because of the need at that time for invasive implantation procedures, challenges to monitoring and maintaining a homogeneous, localized temperature elevation within the tumor tissue, as well as other technical and logistic challenges. Magnetic resonance imaging-guided focused ultrasound (MRgFUS) is a relatively new technology in clinical use that is capable of highly accurate transcranial HT and has the potential to overcome many of the limitations faced in previous trials combining HT and RT in HGG. In this review, we detail and compile the previous clinical results of combined HT and RT in HGG patients. We also introduce and discuss the potential of MRgFUS as a noninvasive method for HT to radiosensitize HGG.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/terapia , Glioma/diagnóstico por imagen , Glioma/terapia , Hipertermia Inducida/métodos , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/radioterapia , Terapia Combinada , Glioma/patología , Glioma/radioterapia , Humanos , Imagen por Resonancia Magnética/métodos , Recurrencia Local de Neoplasia/diagnóstico por imagen , Recurrencia Local de Neoplasia/radioterapia , Recurrencia Local de Neoplasia/terapia , Ensayos Clínicos Controlados Aleatorios como Asunto , Ultrasonografía/métodos
20.
Int J Radiat Oncol Biol Phys ; 105(2): 400-409, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31175904

RESUMEN

PURPOSE: To assess whether BIO 300, a synthetic genistein nanosuspension, improves the therapeutic index in prostate cancer treatment by preventing radiation-induced erectile dysfunction (ED) without reducing tumor radiosensitivity. METHODS AND MATERIALS: Male Sprague-Dawley rats were exposed to 25 Gy of 220-kV prostate-confined x-rays. Animals were randomized to receive sham radiation therapy (RT), RT alone, RT with daily BIO 300 at 2 experimental dosing regimens, or RT with daily genistein. Erectile response was evaluated over time. Penile shaft tissue was harvested for histologic analyses. Murine xenograft studies using prostate cancer cell lines determined the effects of BIO 300 dosing on RT efficacy. RESULTS: Prostate-confined RT significantly decreased apomorphine-induced erectile response (P < .05 vs sham RT). Erection frequency in animals receiving prophylactic treatment with BIO 300 starting 3 days before RT was similar to sham controls after RT. Treatment with synthetic genistein did not mitigate loss in erectile frequency. At week 14, post-RT treatment with BIO 300 resulted in significantly higher quality of erectile function compared with both the RT arm and the RT arm receiving genistein starting 3 days before irradiation (P < .05). In hormone-sensitive and insensitive prostate tumor-bearing mice, BIO 300 administration did not negatively affect radiation-induced tumor growth delay. CONCLUSIONS: BIO 300 prevents radiation-induced ED, measured by erection frequency, erectile function, and erection quality, when administered 3 days before RT and continued daily for up to 14 weeks. Data also suggest that BIO 300 administered starting 2 hours after RT mitigates radiation-induced ED. Data provide strong nonclinical evidence to support clinical translation of BIO 300 for mitigation of ED while maintaining treatment response to RT.


Asunto(s)
Disfunción Eréctil/prevención & control , Genisteína/uso terapéutico , Nanopartículas/uso terapéutico , Erección Peniana/efectos de los fármacos , Traumatismos Experimentales por Radiación/complicaciones , Protectores contra Radiación/uso terapéutico , Animales , Presión Sanguínea , Modelos Animales de Enfermedad , Drogas en Investigación/uso terapéutico , Disfunción Eréctil/etiología , Fibrosis , Masculino , Ratones , Ratones Desnudos , Erección Peniana/efectos de la radiación , Pene/irrigación sanguínea , Pene/patología , Próstata/efectos de la radiación , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Flujo Sanguíneo Regional , Suspensiones/uso terapéutico , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA