Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Gastro Hep Adv ; 3(6): 711-723, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39280921

RESUMEN

Background and Aims: Recent studies showed that patients suffering from lysosomal acid lipase deficiency (LAL-D) benefit from enzyme replacement therapy; however, liver histopathology improved in some but not all patients. We hypothesized that the pan-peroxisome proliferator-activated receptor agonist lanifibranor may have beneficial effects on liver inflammation in LAL knockout (Lal-/-) mice based on its promising results in alleviating liver inflammation in patients with metabolic dysfunction-associated steatohepatitis. Methods: Female Lal-/- mice were daily gavaged with lanifibranor or vehicle for 21 days. The effects of the treatment were assessed by measuring body and organ weights, plasma lipids and lipoproteins, as well as hematological parameters, followed by liver proteomics and metabolomics. Results: Lanifibranor treatment slightly altered organ weights without affecting the total body weight of Lal-/- mice. We observed major changes in the proteome, with multiple proteins related to lipid metabolism, peroxisomal, and mitochondrial activities being upregulated and inflammation-related proteins being downregulated in the livers of treated mice. Hepatic lipid levels and histology remained unaltered, whereas plasma triacylglycerol and total cholesterol levels were decreased and the lipoprotein profile of lanifibranor-treated Lal-/- mice improved. Conclusion: Lanifibranor treatment positively affected liver inflammation and dyslipidemia in Lal-/- mice. These findings suggest the necessity of a further combined study of lanifibranor with enzyme replacement therapy in Lal-/- mice to improve the phenotype. Moreover, there is a compelling rationale for conducting clinical trials to assess the efficacy of lanifibranor as a potential treatment option for LAL-D in humans.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38705759

RESUMEN

Lipid-associated macrophages (LAMs) are phagocytic cells with lipid-handling capacity identified in various metabolic derangements. During disease development, they locate to atherosclerotic plaques, adipose tissue (AT) of individuals with obesity, liver lesions in steatosis and steatohepatitis, and the intestinal lamina propria. LAMs can also emerge in the metabolically demanding microenvironment of certain tumors. In this review, we discuss major questions regarding LAM recruitment, differentiation, and self-renewal, and, ultimately, their acute and chronic functional impact on the development of metabolic diseases. Further studies need to clarify whether and under which circumstances LAMs drive disease progression or resolution and how their phenotype can be modulated to ameliorate metabolic disorders.

3.
Nat Commun ; 15(1): 1391, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360943

RESUMEN

In obesity, sustained adipose tissue (AT) inflammation constitutes a cellular memory that limits the effectiveness of weight loss interventions. Yet, the impact of fasting regimens on the regulation of AT immune infiltration is still elusive. Here we show that intermittent fasting (IF) exacerbates the lipid-associated macrophage (LAM) inflammatory phenotype of visceral AT in obese mice. Importantly, this increase in LAM abundance is strongly p53 dependent and partly mediated by p53-driven adipocyte apoptosis. Adipocyte-specific deletion of p53 prevents LAM accumulation during IF, increases the catabolic state of adipocytes, and enhances systemic metabolic flexibility and insulin sensitivity. Finally, in cohorts of obese/diabetic patients, we describe a p53 polymorphism that links to efficacy of a fasting-mimicking diet and that the expression of p53 and TREM2 in AT negatively correlates with maintaining weight loss after bariatric surgery. Overall, our results demonstrate that p53 signalling in adipocytes dictates LAM accumulation in AT under IF and modulates fasting effectiveness in mice and humans.


Asunto(s)
Resistencia a la Insulina , Ayuno Intermitente , Proteína p53 Supresora de Tumor , Animales , Humanos , Ratones , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Inflamación/metabolismo , Resistencia a la Insulina/genética , Obesidad/genética , Obesidad/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Pérdida de Peso
4.
Mol Metab ; 79: 101869, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38160938

RESUMEN

OBJECTIVE: Lysosomal acid lipase (LAL) is the only enzyme known to hydrolyze cholesteryl esters (CE) and triacylglycerols in lysosomes at an acidic pH. Despite the importance of lysosomal hydrolysis in skeletal muscle (SM), research in this area is limited. We hypothesized that LAL may play an important role in SM development, function, and metabolism as a result of lipid and/or carbohydrate metabolism disruptions. RESULTS: Mice with systemic LAL deficiency (Lal-/-) had markedly lower SM mass, cross-sectional area, and Feret diameter despite unchanged proteolysis or protein synthesis markers in all SM examined. In addition, Lal-/- SM showed increased total cholesterol and CE concentrations, especially during fasting and maturation. Regardless of increased glucose uptake, expression of the slow oxidative fiber marker MYH7 was markedly increased in Lal-/-SM, indicating a fiber switch from glycolytic, fast-twitch fibers to oxidative, slow-twitch fibers. Proteomic analysis of the oxidative and glycolytic parts of the SM confirmed the transition between fast- and slow-twitch fibers, consistent with the decreased Lal-/- muscle size due to the "fiber paradox". Decreased oxidative capacity and ATP concentration were associated with reduced mitochondrial function of Lal-/- SM, particularly affecting oxidative phosphorylation, despite unchanged structure and number of mitochondria. Impairment in muscle function was reflected by increased exhaustion in the treadmill peak effort test in vivo. CONCLUSION: We conclude that whole-body loss of LAL is associated with a profound remodeling of the muscular phenotype, manifested by fiber type switch and a decline in muscle mass, most likely due to dysfunctional mitochondria and impaired energy metabolism, at least in mice.


Asunto(s)
Enfermedades Mitocondriales , Enfermedad de Wolman , Animales , Ratones , Músculo Esquelético/metabolismo , Proteómica , Esterol Esterasa/metabolismo , Enfermedad de Wolman/genética
5.
Cardiovasc Diabetol ; 22(1): 327, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-38017481

RESUMEN

BACKGROUND: Matrix metalloproteinase 12 (MMP12) is a macrophage-secreted protein that is massively upregulated as a pro-inflammatory factor in metabolic and vascular tissues of mice and humans suffering from cardiometabolic diseases (CMDs). However, the molecular mechanisms explaining the contributions of MMP12 to CMDs are still unclear. METHODS: We investigated the impact of MMP12 deficiency on CMDs in a mouse model that mimics human disease by simultaneously developing adipose tissue inflammation, insulin resistance, and atherosclerosis. To this end, we generated and characterized low-density lipoprotein receptor (Ldlr)/Mmp12-double knockout (DKO) mice fed a high-fat sucrose- and cholesterol-enriched diet for 16-20 weeks. RESULTS: DKO mice showed lower cholesterol and plasma glucose concentrations and improved insulin sensitivity compared with LdlrKO mice. Untargeted proteomic analyses of epididymal white adipose tissue revealed that inflammation- and fibrosis-related pathways were downregulated in DKO mice. In addition, genetic deletion of MMP12 led to alterations in immune cell composition and a reduction in plasma monocyte chemoattractant protein-1 in peripheral blood which indicated decreased low-grade systemic inflammation. Aortic en face analyses and staining of aortic valve sections demonstrated reduced atherosclerotic plaque size and collagen content, which was paralleled by an improved relaxation pattern and endothelial function of the aortic rings and more elastic aortic sections in DKO compared to LdlrKO mice. Shotgun proteomics revealed upregulation of anti-inflammatory and atheroprotective markers in the aortas of DKO mice, further supporting our data. In humans, MMP12 serum concentrations were only weakly associated with clinical and laboratory indicators of CMDs. CONCLUSION: We conclude that the genetic deletion of MMP12 ameliorates obesity-induced low-grade inflammation, white adipose tissue dysfunction, biomechanical properties of the aorta, and the development of atherosclerosis. Therefore, therapeutic strategies targeting MMP12 may represent a promising approach to combat CMDs.


Asunto(s)
Aterosclerosis , Resistencia a la Insulina , Placa Aterosclerótica , Animales , Humanos , Ratones , Aterosclerosis/genética , Aterosclerosis/prevención & control , Colesterol , Modelos Animales de Enfermedad , Inflamación/genética , Inflamación/metabolismo , Metaloproteinasa 12 de la Matriz/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Proteómica , Receptores de LDL/genética
6.
J Lipid Res ; 64(9): 100427, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37595802

RESUMEN

Lysosomal acid lipase (LAL) is the sole lysosomal enzyme responsible for the degradation of cholesteryl esters and triacylglycerols at acidic pH. Impaired LAL activity leads to LAL deficiency (LAL-D), a severe and fatal disease characterized by ectopic lysosomal lipid accumulation. Reduced LAL activity also contributes to the development and progression of non-alcoholic fatty liver disease (NAFLD). To advance our understanding of LAL-related liver pathologies, we performed comprehensive proteomic profiling of livers from mice with systemic genetic loss of LAL (Lal-/-) and from mice with hepatocyte-specific LAL-D (hepLal-/-). Lal-/- mice exhibited drastic proteome alterations, including dysregulation of multiple proteins related to metabolism, inflammation, liver fibrosis, and cancer. Global loss of LAL activity impaired both acidic and neutral lipase activities and resulted in hepatic lipid accumulation, indicating a complete metabolic shift in Lal-/- livers. Hepatic inflammation and immune cell infiltration were evident, with numerous upregulated inflammation-related gene ontology biological process terms. In contrast, both young and mature hepLal-/- mice displayed only minor changes in the liver proteome, suggesting that loss of LAL solely in hepatocytes does not phenocopy metabolic alterations observed in mice globally lacking LAL. These findings provide valuable insights into the mechanisms underlying liver dysfunction in LAL-D and may help in understanding why decreased LAL activity contributes to NAFLD. Our study highlights the importance of LAL in maintaining liver homeostasis and demonstrates the drastic consequences of its global deficiency on the liver proteome and liver function.


Asunto(s)
Neoplasias , Enfermedad del Hígado Graso no Alcohólico , Enfermedad de Wolman , Ratones , Animales , Esterol Esterasa/genética , Esterol Esterasa/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteómica , Hígado/metabolismo , Enfermedad de Wolman/genética , Enfermedad de Wolman/metabolismo , Enfermedad de Wolman/patología , Cirrosis Hepática/genética , Triglicéridos/metabolismo , Inflamación/metabolismo , Neoplasias/metabolismo
7.
Mol Metab ; 73: 101737, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37182562

RESUMEN

OBJECTIVE: To date, the only enzyme known to be responsible for the hydrolysis of cholesteryl esters and triacylglycerols in the lysosome at acidic pH is lysosomal acid lipase (LAL). Lipid malabsorption in the small intestine (SI), accompanied by macrophage infiltration, is one of the most common pathological features of LAL deficiency. However, the exact role of LAL in intestinal lipid metabolism is still unknown. METHODS: We collected three parts of the SI (duodenum, jejunum, ileum) from mice with a global (LAL KO) or intestine-specific deletion of LAL (iLAL KO) and corresponding controls. RESULTS: We observed infiltration of lipid-associated macrophages into the lamina propria, where neutral lipids accumulate massively in the SI of LAL KO mice. In addition, LAL KO mice absorb less dietary lipids but have accelerated basolateral lipid uptake, secrete fewer chylomicrons, and have increased fecal lipid loss. Inflammatory markers and genes involved in lipid metabolism were overexpressed in the duodenum of old but not in younger LAL KO mice. Despite the significant reduction of LAL activity in enterocytes of enterocyte-specific (iLAL) KO mice, villous morphology, intestinal lipid concentrations, expression of lipid transporters and inflammatory genes, as well as lipoprotein secretion were comparable to control mice. CONCLUSIONS: We conclude that loss of LAL only in enterocytes is insufficient to cause lipid deposition in the SI, suggesting that infiltrating macrophages are the key players in this process.


Asunto(s)
Intestinos , Metabolismo de los Lípidos , Ratones , Animales , Ésteres del Colesterol/metabolismo , Macrófagos/metabolismo , Enfermedad de Wolman
8.
Trends Mol Med ; 29(6): 425-438, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37028992

RESUMEN

Lysosomal acid lipase (LAL) is the sole enzyme known to degrade neutral lipids in the lysosome. Mutations in the LAL-encoding LIPA gene lead to rare lysosomal lipid storage disorders with complete or partial absence of LAL activity. This review discusses the consequences of defective LAL-mediated lipid hydrolysis on cellular lipid homeostasis, epidemiology, and clinical presentation. Early detection of LAL deficiency (LAL-D) is essential for disease management and survival. LAL-D must be considered in patients with dyslipidemia and elevated aminotransferase concentrations of unknown etiology. Enzyme replacement therapy, sometimes in combination with hematopoietic stem cell transplantation (HSCT), is currently the only therapy for LAL-D. New technologies based on mRNA and viral vector gene transfer are recent efforts to provide other effective therapeutic strategies.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Enfermedad de Wolman , Humanos , Enfermedad de Wolman/diagnóstico , Enfermedad de Wolman/genética , Enfermedad de Wolman/terapia , Esterol Esterasa/genética , Esterol Esterasa/metabolismo , Lípidos/uso terapéutico , Enfermedad de Wolman
9.
Mol Metab ; 71: 101705, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36907508

RESUMEN

OBJECTIVE: In brown adipose tissue (iBAT), the balance between lipid/glucose uptake and lipolysis is tightly regulated by insulin signaling. Downstream of the insulin receptor, PDK1 and mTORC2 phosphorylate AKT, which activates glucose uptake and lysosomal mTORC1 signaling. The latter requires the late endosomal/lysosomal adaptor and MAPK and mTOR activator (LAMTOR/Ragulator) complex, which serves to translate the nutrient status of the cell to the respective kinase. However, the role of LAMTOR in metabolically active iBAT has been elusive. METHODS: Using an AdipoqCRE-transgenic mouse line, we deleted LAMTOR2 (and thereby the entire LAMTOR complex) in adipose tissue (LT2 AKO). To examine the metabolic consequences, we performed metabolic and biochemical studies in iBAT isolated from mice housed at different temperatures (30 °C, room temperature and 5 °C), after insulin treatment, or in fasted and refed condition. For mechanistic studies, mouse embryonic fibroblasts (MEFs) lacking LAMTOR 2 were analyzed. RESULTS: Deletion of the LAMTOR complex in mouse adipocytes resulted in insulin-independent AKT hyperphosphorylation in iBAT, causing increased glucose and fatty acid uptake, which led to massively enlarged lipid droplets. As LAMTOR2 was essential for the upregulation of de novo lipogenesis, LAMTOR2 deficiency triggered exogenous glucose storage as glycogen in iBAT. These effects are cell autonomous, since AKT hyperphosphorylation was abrogated by PI3K inhibition or by deletion of the mTORC2 component Rictor in LAMTOR2-deficient MEFs. CONCLUSIONS: We identified a homeostatic circuit for the maintenance of iBAT metabolism that links the LAMTOR-mTORC1 pathway to PI3K-mTORC2-AKT signaling downstream of the insulin receptor.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Receptor de Insulina , Ratones , Animales , Receptor de Insulina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Tejido Adiposo Pardo/metabolismo , Fibroblastos/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Insulina/metabolismo , Ratones Transgénicos , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Nutrientes , Homeostasis , Glucosa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas/metabolismo
10.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36834530

RESUMEN

Monoglyceride lipase (MGL) hydrolyzes monoacylglycerols (MG) to glycerol and one fatty acid. Among the various MG species, MGL also degrades 2-arachidonoylglycerol, the most abundant endocannabinoid and potent activator of the cannabinoid receptors 1 and 2. We investigated the consequences of MGL deficiency on platelet function using systemic (Mgl-/-) and platelet-specific Mgl-deficient (platMgl-/-) mice. Despite comparable platelet morphology, loss of MGL was associated with decreased platelet aggregation and reduced response to collagen activation. This was reflected by reduced thrombus formation in vitro, accompanied by a longer bleeding time and a higher blood volume loss. Occlusion time after FeCl3-induced injury was markedly reduced in Mgl-/- mice, which is consistent with contraction of large aggregates and fewer small aggregates in vitro. The absence of any functional changes in platelets from platMgl-/- mice is in accordance with lipid degradation products or other molecules in the circulation, rather than platelet-specific effects, being responsible for the observed alterations in Mgl-/- mice. We conclude that genetic deletion of MGL is associated with altered thrombogenesis.


Asunto(s)
Monoacilglicerol Lipasas , Monoglicéridos , Animales , Ratones , Endocannabinoides/metabolismo , Lipólisis , Ratones Endogámicos C57BL , Ratones Noqueados , Monoacilglicerol Lipasas/genética
11.
Biomolecules ; 12(9)2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36139111

RESUMEN

Phospholipid metabolism, including phosphatidylcholine (PC) biosynthesis, is crucial for various biological functions and is associated with longevity. Phosphatidylethanolamine N-methyltransferase (PEMT) is a protein that catalyzes the biosynthesis of PC, the levels of which change in various organs such as the brain and kidneys during aging. However, the role of PEMT for systemic PC supply is not fully understood. To address how PEMT affects aging-associated energy metabolism in tissues responsible for nutrient absorption, lipid storage, and energy consumption, we employed NMR-based metabolomics to study the liver, plasma, intestine (duodenum, jejunum, and ileum), brown/white adipose tissues (BAT and WAT), and skeletal muscle of young (9-10 weeks) and old (91-132 weeks) wild-type (WT) and PEMT knockout (KO) mice. We found that the effect of PEMT-knockout was tissue-specific and age-dependent. A deficiency of PEMT affected the metabolome of all tissues examined, among which the metabolome of BAT from both young and aged KO mice was dramatically changed in comparison to the WT mice, whereas the metabolome of the jejunum was only slightly affected. As for aging, the absence of PEMT increased the divergence of the metabolome during the aging of the liver, WAT, duodenum, and ileum and decreased the impact on skeletal muscle. Overall, our results suggest that PEMT plays a previously underexplored, critical role in both aging and energy metabolism.


Asunto(s)
Envejecimiento , Hígado , Fosfatidiletanolamina N-Metiltransferasa , Animales , Hígado/metabolismo , Ratones , Ratones Noqueados , Fosfatidilcolinas , Fosfatidiletanolamina N-Metiltransferasa/genética , Fosfatidiletanolamina N-Metiltransferasa/metabolismo , Fosfolípidos/metabolismo
12.
Front Genet ; 13: 913030, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35734423

RESUMEN

Active thermogenic adipocytes avidly consume energy substrates like fatty acids and glucose to maintain body temperature upon cold exposure. Despite strong evidence for the involvement of brown adipose tissue (BAT) in controlling systemic energy homeostasis upon nutrient excess, it is unclear how the activity of brown adipocytes is regulated in times of nutrient scarcity. Therefore, this study aimed to scrutinize factors that modulate BAT activity to balance thermogenic and energetic needs upon simultaneous fasting and cold stress. For an unbiased view, we performed transcriptomic and miRNA sequencing analyses of BAT from acutely fasted (24 h) mice under mild cold exposure. Combining these data with in-depth bioinformatic analyses and in vitro gain-of-function experiments, we define a previously undescribed axis of p53 inducing miR-92a-1-5p transcription that is highly upregulated by fasting in thermogenic adipocytes. p53, a fasting-responsive transcription factor, was previously shown to control genes involved in the thermogenic program and miR-92a-1-5p was found to negatively correlate with human BAT activity. Here, we identify fructose transporter Slc2a5 as one direct downstream target of this axis and show that fructose can be taken up by and metabolized in brown adipocytes. In sum, this study delineates a fasting-induced pathway involving p53 that transactivates miR-92a-1-5p, which in turn decreases Slc2a5 expression, and suggests fructose as an energy substrate in thermogenic adipocytes.

13.
Mol Metab ; 61: 101510, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35504532

RESUMEN

OBJECTIVES: Lysosomal acid lipase (LAL) is the key enzyme, which degrades neutral lipids at an acidic pH in lysosomes. The role of LAL in various cellular processes has mostly been studied in LAL-knockout mice, which share phenotypical characteristics with humans suffering from LAL deficiency. In vitro, the cell-specific functions of LAL have been commonly investigated by using the LAL inhibitors Lalistat-1 and Lalistat-2. METHODS: We performed lipid hydrolase activity assays and serine hydrolase-specific activity-based labeling combined with quantitative proteomics to investigate potential off-target effects of Lalistat-1 and -2. RESULTS: Pharmacological LAL inhibition but not genetic loss of LAL impairs isoproterenol-stimulated lipolysis as well as neutral triglyceride and cholesteryl ester hydrolase activities. Apart from LAL, Lalistat-1 and -2 also inhibit major cytosolic lipid hydrolases responsible for lipid degradation in primary cells at neutral pH through off-target effects. Their binding to the active center of the enzymes leads to a decrease in neutral lipid hydrolase activities in cells overexpressing the respective enzymes. CONCLUSIONS: Our findings are critically important since they demonstrate that commonly used concentrations of these inhibitors are not suitable to investigate the role of LAL-specific lipolysis in lysosomal function, signaling pathways, and autophagy. The interpretation of their effects on lipid metabolism should be taken with caution and the applied inhibitor concentrations in cell culture studies should not exceed 1 µM.


Asunto(s)
Carbamatos/farmacología , Esterol Esterasa , Tiadiazoles/farmacología , Enfermedad de Wolman , Animales , Hidrolasas/metabolismo , Metabolismo de los Lípidos , Ratones , Esterol Esterasa/metabolismo , Triglicéridos , Enfermedad de Wolman/genética , Enfermedad de Wolman/metabolismo
14.
Cells ; 11(7)2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35406635

RESUMEN

Systemic inflammation induces alterations in the finely tuned micromilieu of the brain that is continuously monitored by microglia. In the CNS, these changes include increased synthesis of the bioactive lipid lysophosphatidic acid (LPA), a ligand for the six members of the LPA receptor family (LPA1-6). In mouse and human microglia, LPA5 belongs to a set of receptors that cooperatively detect danger signals in the brain. Engagement of LPA5 by LPA polarizes microglia toward a pro-inflammatory phenotype. Therefore, we studied the consequences of global LPA5 knockout (-/-) on neuroinflammatory parameters in a mouse endotoxemia model and in primary microglia exposed to LPA in vitro. A single endotoxin injection (5 mg/kg body weight) resulted in lower circulating concentrations of TNFα and IL-1ß and significantly reduced gene expression of IL-6 and CXCL2 in the brain of LPS-injected LPA5-/- mice. LPA5 deficiency improved sickness behavior and energy deficits produced by low-dose (1.4 mg LPS/kg body weight) chronic LPS treatment. LPA5-/- microglia secreted lower concentrations of pro-inflammatory cyto-/chemokines in response to LPA and showed higher maximal mitochondrial respiration under basal and LPA-activated conditions, further accompanied by lower lactate release, decreased NADPH and GSH synthesis, and inhibited NO production. Collectively, our data suggest that LPA5 promotes neuroinflammation by transmiting pro-inflammatory signals during endotoxemia through microglial activation induced by LPA.


Asunto(s)
Endotoxemia , Receptores del Ácido Lisofosfatídico , Animales , Peso Corporal , Modelos Animales de Enfermedad , Endotoxemia/metabolismo , Inflamación/metabolismo , Lipopolisacáridos , Lisofosfolípidos , Ratones , Ratones Noqueados , Microglía/metabolismo , Receptores del Ácido Lisofosfatídico/genética
15.
Cells ; 11(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35269472

RESUMEN

According to genome-wide RNA sequencing data from human and mouse platelets, adipose triglyceride lipase (ATGL), the main lipase catalyzing triglyceride (TG) hydrolysis in cytosolic lipid droplets (LD) at neutral pH, is expressed in platelets. Currently, it is elusive to whether common lipolytic enzymes are involved in the degradation of TG in platelets. Since the consequences of ATGL deficiency in platelets are unknown, we used whole-body and platelet-specific (plat)Atgl-deficient (-/-) mice to investigate the loss of ATGL on platelet function. Our results showed that platelets accumulate only a few LD due to lack of ATGL. Stimulation with platelet-activating agonists resulted in comparable platelet activation in Atgl-/-, platAtgl-/-, and wild-type mice. Measurement of mitochondrial respiration revealed a decreased oxygen consumption rate in platelets from Atgl-/- but not from platAtgl-/- mice. Of note, global loss of ATGL was associated with an anti-thrombogenic phenotype, which was evident by reduced thrombus formation in collagen-coated channels in vitro despite unchanged bleeding and occlusion times in vivo. We conclude that genetic deletion of ATGL affects collagen-induced thrombosis without pathological bleeding and platelet activation.


Asunto(s)
Aciltransferasas/metabolismo , Lipasa , Trombosis , Animales , Lipasa/metabolismo , Ratones , Ratones Noqueados , Activación Plaquetaria , Triglicéridos/metabolismo
16.
Artículo en Inglés | MEDLINE | ID: mdl-35150895

RESUMEN

Enterocytes of the small intestine (SI) play an important role in maintaining systemic lipid levels by regulating dietary lipid absorption and postprandial lipoprotein secretion. An excessive amount of dietary-derived triglycerides (TGs) taken up by the apical side of enterocytes or basolaterally internalized lipoprotein remnants can be transiently stored in cytosolic lipid droplets (cLDs). As mice lacking adipose TG lipase (ATGL) in the SI display massive accumulation of cLDs but also delayed cholesterol absorption, we hypothesized that SI-specific overexpression of ATGL (Atgl iTg) might have beneficial effects on lipid homeostasis in the gut and possibly throughout the body. Here, we demonstrate that Atgl iTg mice had only modestly increased enzymatic activity despite drastically elevated Atgl mRNA levels (up to 120-fold) on chow diet, and was highly induced upon high-fat/high-cholesterol diet (HF/HCD) feeding. Atgl iTg mice showed markedly reduced intestinal TG concentrations after acute and chronic lipid challenge without affecting chylomicron TG secretion. Circulating plasma cholesterol levels were significantly lower in Atgl iTg mice under different feeding conditions, contrasting the accelerated uptake of dietary cholesterol into the circulation after HF/HCD feeding. In the fasted state, gene expression analysis revealed modulation of PPARα and liver X receptor (LXR) target genes by an increased fatty acid release, whereas the decreased plasma cholesterol concentrations in refed mice were more likely due to changes in HDL synthesis and secretion. We conclude that ATGL, in addition to its role in TG catabolism, plays a critical role in whole-body cholesterol homeostasis by modulating PPARα and LXR signaling in intestinal enterocytes.


Asunto(s)
Aciltransferasas , Colesterol , Enterocitos , Aciltransferasas/genética , Animales , Colesterol/metabolismo , Enterocitos/metabolismo , Homeostasis , Lipasa/metabolismo , Receptores X del Hígado/metabolismo , Ratones , PPAR alfa/metabolismo , Triglicéridos/metabolismo
17.
Cells ; 10(10)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34685599

RESUMEN

Lysosomal acid lipase (LAL) is the sole enzyme known to be responsible for the hydrolysis of cholesteryl esters and triglycerides at an acidic pH in lysosomes, resulting in the release of unesterified cholesterol and free fatty acids. However, the role of LAL in diet-induced adaptations is largely unexplored. In this study, we demonstrate that feeding a Western-type diet to Lal-deficient (LAL-KO) mice triggers metabolic reprogramming that modulates gut-liver cholesterol homeostasis. Induction of ileal fibroblast growth factor 15 (three-fold), absence of hepatic cholesterol 7α-hydroxylase expression, and activation of the ERK phosphorylation cascade results in altered bile acid composition, substantial changes in the gut microbiome, reduced nutrient absorption by 40%, and two-fold increased fecal lipid excretion in LAL-KO mice. These metabolic adaptations lead to impaired bile acid synthesis, lipoprotein uptake, and cholesterol absorption and ultimately to the resistance of LAL-KO mice to diet-induced obesity. Our results indicate that LAL-derived lipolytic products might be important metabolic effectors in the maintenance of whole-body lipid homeostasis.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Disbiosis/metabolismo , Metabolismo de los Lípidos , Obesidad/metabolismo , Esterol Esterasa/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Esterol Esterasa/genética
18.
Int J Mol Sci ; 22(19)2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34638755

RESUMEN

Cholesterol and fatty acids are essential lipids that are critical for membrane biosynthesis and fetal organ development. Cholesteryl esters (CE) are degraded by hormone-sensitive lipase (HSL) in the cytosol and by lysosomal acid lipase (LAL) in the lysosome. Impaired LAL or HSL activity causes rare pathologies in humans, with HSL deficiency presenting less severe clinical manifestations. The infantile form of LAL deficiency, a lysosomal lipid storage disorder, leads to premature death. However, the importance of defective lysosomal CE degradation and its consequences during early life are incompletely understood. We therefore investigated how defective CE catabolism affects fetus and infant maturation using Lal and Hsl knockout (-/-) mouse models. This study demonstrates that defective lysosomal but not neutral lipolysis alters placental and fetal cholesterol homeostasis and exhibits an initial disease pathology already in utero as Lal-/- fetuses accumulate hepatic lysosomal lipids. Immediately after birth, LAL deficiency exacerbates with massive hepatic lysosomal lipid accumulation, which continues to worsen into young adulthood. Our data highlight the crucial role of LAL during early development, with the first weeks after birth being critical for aggravating LAL deficiency.


Asunto(s)
Lipólisis , Hígado , Lisosomas , Esterol Esterasa/deficiencia , Enfermedad de Wolman , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Humanos , Hígado/metabolismo , Hígado/patología , Lisosomas/metabolismo , Lisosomas/patología , Ratones , Ratones Noqueados , Enfermedad de Wolman/genética , Enfermedad de Wolman/metabolismo , Enfermedad de Wolman/patología , Enfermedad de Wolman
19.
Bone ; 148: 115946, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33838322

RESUMEN

Lysosomal acid lipase (LAL) is essential for cholesteryl ester (CE) and triacylglycerol (TAG) hydrolysis in the lysosome. Clinically, an autosomal recessive LIPA mutation causes LAL deficiency (LALD), previously described as Wolman Disease or Cholesteryl Ester Storage Disease (CESD). LAL-D is associated with ectopic lipid accumulation in the liver, small intestine, spleen, adrenal glands, and blood. Considering the importance of unesterified cholesterol and fatty acids in bone metabolism, we hypothesized that LAL is essential for bone formation, and ultimately, skeletal health. To investigate the role of LAL in skeletal homeostasis, we used LAL-deficient (-/-) mice, in vitro osteoblast cultures, and novel clinical data from LAL-D patients. Both male and female LAL-/- mice demonstarted lower trabecular and cortical bone parameters , which translated to reduced biomechanical properties. Further histological analyses revealed that LAL-/- mice had fewer osteoblasts, with no change in osteoclast or marrow adipocyte numbers. In studying the cell-autonomous role of LAL, we observed impaired differentiation of LAL-/- calvarial osteoblasts and in bone marrow stromal cells treated with the LAL inhibitor lalistat. Consistent with LAL's role in other tissues, lalistat resulted in profound lipid puncta accumulation and an altered intracellular lipid profile. Finally, we analyzed a large de-identified national insurance database (i.e. 2016/2017 Optum Clinformatics®) which revealed that adults (≥18 years) with CESD (n = 3076) had a higher odds ratio (OR = 1.21; 95% CI = 1.03-1.41) of all-cause fracture at any location compared to adults without CESD (n = 13.7 M) after adjusting for demographic variables and osteoporosis. These data demonstrate that alterations in LAL have significant clinical implications related to fracture risk and that LAL's modulation of lipid metabolism is a critical for osteoblast function.


Asunto(s)
Enfermedad de Acumulación de Colesterol Éster , Enfermedad de Wolman , Animales , Ésteres del Colesterol , Femenino , Humanos , Hígado , Masculino , Ratones , Esterol Esterasa/genética , Enfermedad de Wolman/genética
20.
Biomolecules ; 11(2)2021 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-33562384

RESUMEN

The dysregulation of cellular metabolism is a hallmark of ageing. To understand the metabolic changes that occur as a consequence of the ageing process and to find biomarkers for age-related diseases, we conducted metabolomic analyses of the brain, heart, kidney, liver, lung and spleen in young (9-10 weeks) and old (96-104 weeks) wild-type mice [mixed genetic background of 129/J and C57BL/6] using NMR spectroscopy. We found differences in the metabolic fingerprints of all tissues and distinguished several metabolites to be altered in most tissues, suggesting that they may be universal biomarkers of ageing. In addition, we found distinct tissue-clustered sets of metabolites throughout the organism. The associated metabolic changes may reveal novel therapeutic targets for the treatment of ageing and age-related diseases. Moreover, the identified metabolite biomarkers could provide a sensitive molecular read-out to determine the age of biologic tissues and organs and to validate the effectiveness and potential off-target effects of senolytic drug candidates on both a systemic and tissue-specific level.


Asunto(s)
Envejecimiento/metabolismo , Animales , Biomarcadores/metabolismo , Encéfalo/metabolismo , Femenino , Riñón/metabolismo , Hígado/metabolismo , Pulmón/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Metabolómica/métodos , Ratones , Ratones Endogámicos C57BL , Miocardio/metabolismo , Bazo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA