Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Aging Cell ; : e14172, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747044

RESUMEN

Slowing and/or reversing brain ageing may alleviate cognitive impairments. Previous studies have found that exercise may mitigate cognitive decline, but the mechanisms underlying this remain largely unclear. Here we provide unbiased analyses of single-cell RNA sequencing data, showing the impacts of exercise and ageing on specific cell types in the mouse hippocampus. We demonstrate that exercise has a profound and selective effect on aged microglia, reverting their gene expression signature to that of young microglia. Pharmacologic depletion of microglia further demonstrated that these cells are required for the stimulatory effects of exercise on hippocampal neurogenesis but not cognition. Strikingly, allowing 18-month-old mice access to a running wheel did by and large also prevent and/or revert T cell presence in the ageing hippocampus. Taken together, our data highlight the profound impact of exercise in rejuvenating aged microglia, associated pro-neurogenic effects and on peripheral immune cell presence in the ageing female mouse brain.

2.
Nat Commun ; 15(1): 1441, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383596

RESUMEN

Bacteria adapt to selective pressure in their immediate environment in multiple ways. One mechanism involves the acquisition of independent mutations that disable or modify a key pathway, providing a signature of adaptation via convergent evolution. Extra-intestinal pathogenic Escherichia coli (ExPEC) belonging to sequence type 95 (ST95) represent a global clone frequently associated with severe human infections including acute pyelonephritis, sepsis, and neonatal meningitis. Here, we analysed a publicly available dataset of 613 ST95 genomes and identified a series of loss-of-function mutations that disrupt cellulose production or its modification in 55.3% of strains. We show the inability to produce cellulose significantly enhances ST95 invasive infection in a rat model of neonatal meningitis, leading to the disruption of intestinal barrier integrity in newborn pups and enhanced dissemination to the liver, spleen and brain. Consistent with these observations, disruption of cellulose production in ST95 augmented innate immune signalling and tissue neutrophil infiltration in a mouse model of urinary tract infection. Mutations that disrupt cellulose production were also identified in other virulent ExPEC STs, Shigella and Salmonella, suggesting a correlative association with many Enterobacteriaceae that cause severe human infection. Together, our findings provide an explanation for the emergence of hypervirulent Enterobacteriaceae clones.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Meningitis , Ratones , Animales , Ratas , Humanos , Virulencia/genética , Infecciones por Escherichia coli/microbiología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Factores de Virulencia/genética , Filogenia
3.
Brain Behav Immun ; 117: 181-194, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38211634

RESUMEN

Traumatic brain injury (TBI) results in prolonged and non-resolving activation of microglia. Forced turnover of these cells during the acute phase of TBI aids recovery, but the cell-intrinsic pathways that underpin the pro-repair phenotype of these repopulating microglia remain unclear. Here, we show that selective targeting of ROCK2 with the small molecule inhibitor KD025 impairs the proliferative response of microglia after TBI as well as during genetically induced turnover of microglia. KD025 treatment abolished the substantial neuroprotective and cognitive benefits conferred by repopulating microglia, preventing these cells from replenishing the depleted niche during the early critical time window post-injury. Delaying KD025 treatment to the subacute phase of TBI allowed microglial repopulation to occur, but this did not enhance the benefits conferred by repopulating microglia. Taken together, our data indicate that ROCK2 mediates neuronal survival and microglial population dynamics after TBI, including the emergence of repopulating microglia with a pro-repair phenotype.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Microglía , Humanos , Proliferación Celular , Supervivencia Celular , Hidrolasas , Quinasas Asociadas a rho
4.
Blood ; 143(10): 912-929, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38048572

RESUMEN

ABSTRACT: Chronic graft-versus-host disease (cGVHD) remains a significant complication of allogeneic hematopoietic stem cell transplantation. Central nervous system (CNS) involvement is becoming increasingly recognized, in which brain-infiltrating donor major histocompatibility complex (MHC) class II+ bone marrow-derived macrophages (BMDM) drive pathology. BMDM are also mediators of cutaneous and pulmonary cGVHD, and clinical trials assessing the efficacy of antibody blockade of colony-stimulating factor 1 receptor (CSF1R) to deplete macrophages are promising. We hypothesized that CSF1R antibody blockade may also be a useful strategy to prevent/treat CNS cGVHD. Increased blood-brain barrier permeability during acute GVHD (aGVHD) facilitated CNS antibody access and microglia depletion by anti-CSF1R treatment. However, CSF1R blockade early after transplant unexpectedly exacerbated aGVHD neuroinflammation. In established cGVHD, vascular changes and anti-CSF1R efficacy were more limited. Anti-CSF1R-treated mice retained donor BMDM, activated microglia, CD8+ and CD4+ T cells, and local cytokine expression in the brain. These findings were recapitulated in GVHD recipients, in which CSF1R was conditionally depleted in donor CX3CR1+ BMDM. Notably, inhibition of CSF1R signaling after transplant failed to reverse GVHD-induced behavioral changes. Moreover, we observed aberrant behavior in non-GVHD control recipients administered anti-CSF1R blocking antibody and naïve mice lacking CSF1R in CX3CR1+ cells, revealing a novel role for homeostatic microglia and indicating that ongoing clinical trials of CSF1R inhibition should assess neurological adverse events in patients. In contrast, transfer of Ifngr-/- grafts could reduce MHC class II+ BMDM infiltration, resulting in improved neurocognitive function. Our findings highlight unexpected neurological immune toxicity during CSF1R blockade and provide alternative targets for the treatment of cGVHD within the CNS.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Humanos , Ratones , Animales , Enfermedades Neuroinflamatorias , Enfermedad Injerto contra Huésped/etiología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Linfocitos T CD4-Positivos , Macrófagos/patología , Proteínas Tirosina Quinasas Receptoras , Receptores del Factor Estimulante de Colonias
5.
J Neuroinflammation ; 20(1): 300, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102698

RESUMEN

Graft-versus-host disease (GVHD) is a serious complication of otherwise curative allogeneic haematopoietic stem cell transplants. Chronic GVHD induces pathological changes in peripheral organs as well as the brain and is a frequent cause of late morbidity and death after bone-marrow transplantation. In the periphery, bone-marrow-derived macrophages are key drivers of pathology, but recent evidence suggests that these cells also infiltrate into cGVHD-affected brains. Microglia are also persistently activated in the cGVHD-affected brain. To understand the involvement of these myeloid cell populations in the development and/or progression of cGVHD pathology, we here utilized the blood-brain-barrier permeable colony stimulating factor-1 receptor (CSF-1R) inhibitor PLX3397 (pexidartinib) at varying doses to pharmacologically deplete both cell types. We demonstrate that PLX3397 treatment during the development of cGVHD (i.e., 30 days post-transplant) improves disease symptoms, reducing both the clinical scores and histopathology of multiple cGVHD target organs, including the sequestration of T cells in cGVHD-affected skin tissue. Cognitive impairments associated with cGVHD and neuroinflammation were also attenuated by PLX3397 treatment. PLX3397 treatment prior to the onset of cGVHD (i.e., immediately post-transplant) did not change in clinical scores or histopathology. Overall, our data demonstrate significant benefits of using PLX3397 for the treatment of cGVHD and associated organ pathologies in both the periphery and brain, highlighting the therapeutic potential of pexidartinib for this condition.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Ratones , Animales , Trasplante de Médula Ósea , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Enfermedad Injerto contra Huésped/patología , Proteínas Tirosina Quinasas Receptoras , Receptores del Factor Estimulante de Colonias , Encéfalo/patología , Enfermedad Crónica
6.
Nat Commun ; 14(1): 7739, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38007580

RESUMEN

Spatial transcriptomics (ST) technologies generate multiple data types from biological samples, namely gene expression, physical distance between data points, and/or tissue morphology. Here we developed three computational-statistical algorithms that integrate all three data types to advance understanding of cellular processes. First, we present a spatial graph-based method, pseudo-time-space (PSTS), to model and uncover relationships between transcriptional states of cells across tissues undergoing dynamic change (e.g. neurodevelopment, brain injury and/or microglia activation, and cancer progression). We further developed a spatially-constrained two-level permutation (SCTP) test to study cell-cell interaction, finding highly interactive tissue regions across thousands of ligand-receptor pairs with markedly reduced false discovery rates. Finally, we present a spatial graph-based imputation method with neural network (stSME), to correct for technical noise/dropout and increase ST data coverage. Together, the algorithms that we developed, implemented in the comprehensive and fast stLearn software, allow for robust interrogation of biological processes within healthy and diseased tissues.


Asunto(s)
Algoritmos , Programas Informáticos , Comunicación Celular , Perfilación de la Expresión Génica/métodos , Redes Neurales de la Computación , Transcriptoma
7.
Resusc Plus ; 15: 100426, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37519410

RESUMEN

Aim: Animal models of Extracorporeal Cardiopulmonary Resuscitation (ECPR) focusing on neurological outcomes are required to further the development of this potentially life-saving technology. The aim of this review is to summarize current animal models of ECPR. Methods: A comprehensive database search of PubMed, EMBASE, and Web of Science was undertaken. Full-text publications describing animal models of ECPR between January 1, 2000, and June 30, 2022, were identified and included in the review. Data describing the conduct of the animal models of ECPR, measured variables, and outcomes were extracted according to pre-defined definitions. Results: The search strategy yielded 805 unique reports of which 37 studies were included in the final analysis. Most studies (95%) described using a pig model of ECPR with the remainder (5%) describing a rat model. The most common method for induction of cardiac arrest was a fatal ventricular arrhythmia through electrical stimulation (70%). 10 studies reported neurological assessment of animals using physical examination, serum biomarkers, or electrophysiological findings, however, only two studies described a multimodal assessment. No studies reported the use of brain imaging as part of the neurological assessment. Return of spontaneous circulation was the most reported primary outcome, and no studies described the neurological status of the animal as the primary outcome. Conclusion: Current animal models of ECPR do not describe clinically relevant neurological outcomes after cardiac arrest. Further work is needed to develop models that more accurately mimic clinical scenarios and can test innovations that can be translated to the application of ECPR in clinical medicine.

8.
Brain Behav Immun ; 109: 37-50, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36581304

RESUMEN

Intravenous immunoglobulin (IVIG) is a promising immune-modulatory therapy for limiting harmful inflammation and associated secondary tissue loss in neurotrauma. Here, we show that IVIG therapy attenuates spatial learning and memory deficits following a controlled cortical impact mouse model of traumatic brain injury (TBI). These improvements in cognitive outcomes were associated with increased neuronal survival, an overall reduction in brain tissue loss, and a greater preservation of neural connectivity. Furthermore, we demonstrate that the presence of the main inhibitory FcγRIIB receptor is required for the beneficial effects of IVIG treatment in TBI, with our results simultaneously highlighting the role of this receptor in reducing secondary damage arising from brain injury.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Ratones , Animales , Inmunoglobulinas Intravenosas/farmacología , Inmunoglobulinas Intravenosas/uso terapéutico , Encéfalo , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Encefálicas/complicaciones , Cognición
9.
Blood ; 139(9): 1389-1408, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-34570880

RESUMEN

Graft-versus-host disease (GVHD) remains the leading cause of nonrelapse mortality after allogeneic stem cell transplantation for hematological malignancies. Manifestations of GVHD in the central nervous system (CNS) present as neurocognitive dysfunction in up to 60% of patients; however, the mechanisms driving chronic GVHD (cGVHD) in the CNS are yet to be elucidated. Our studies of murine cGVHD revealed behavioral deficits associated with broad neuroinflammation and persistent Ifng upregulation. By flow cytometry, we observed a proportional shift in the donor-derived T-cell population in the cGVHD brain from early CD8 dominance to later CD4 sequestration. RNA sequencing of the hippocampus identified perturbations to structural and functional synapse-related gene expression, together with the upregulation of genes associated with interferon-γ responses and antigen presentation. Neuroinflammation in the cortex of mice and humans during acute GVHD was recently shown to be mediated by resident microglia-derived tumor necrosis factor. In contrast, infiltration of proinflammatory major histocompatibility complex (MHC) class II+ donor bone marrow (BM)-derived macrophages (BMDMs) was identified as a distinguishing feature of CNS cGVHD. Donor BMDMs, which composed up to 50% of the CNS myeloid population, exhibited a transcriptional signature distinct from resident microglia. Recipients of MHC class II knockout BM grafts exhibited attenuated neuroinflammation and behavior comparable to controls, suggestive of a critical role of donor BMDM MHC class II expression in CNS cGVHD. Our identification of disease mediators distinct from those in the acute phase indicates the necessity to pursue alternative therapeutic targets for late-stage neurological manifestations.


Asunto(s)
Trasplante de Médula Ósea , Enfermedad Injerto contra Huésped/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Macrófagos/inmunología , Enfermedades Neuroinflamatorias/inmunología , Animales , Enfermedad Crónica , Femenino , Ratones
10.
iScience ; 24(11): 103275, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34761193

RESUMEN

Hippocampal function is critical for spatial and contextual learning, and its decline with age contributes to cognitive impairment. Exercise can improve hippocampal function, however, the amount of exercise and mechanisms mediating improvement remain largely unknown. Here, we show exercise reverses learning deficits in aged (24 months) female mice but only when it occurs for a specific duration, with longer or shorter periods proving ineffective. A spike in the levels of growth hormone (GH) and a corresponding increase in neurogenesis during this sweet spot mediate this effect because blocking GH receptor with a competitive antagonist or depleting newborn neurons abrogates the exercise-induced cognitive improvement. Moreover, raising GH levels with GH-releasing hormone agonist improved cognition in nonrunners. We show that GH stimulates neural precursors directly, indicating the link between raised GH and neurogenesis is the basis for the substantially improved learning in aged animals.

11.
J Neurosci ; 41(19): 4172-4186, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33785644

RESUMEN

Microglia, the resident immune cells of the CNS, have emerged as key regulators of neural precursor cell activity in the adult brain. However, the microglia-derived factors that mediate these effects remain largely unknown. In the present study, we investigated a role for microglial brain-derived neurotrophic factor (BDNF), a neurotrophic factor with well known effects on neuronal survival and plasticity. Surprisingly, we found that selective genetic ablation of BDNF from microglia increased the production of newborn neurons under both physiological and inflammatory conditions (e.g., LPS-induced infection and traumatic brain injury). Genetic ablation of BDNF from microglia otherwise also interfered with self-renewal/proliferation, reducing their overall density. In conclusion, we identify microglial BDNF as an important factor regulating microglia population dynamics and states, which in turn influences neurogenesis under both homeostatic and pathologic conditions.SIGNIFICANCE STATEMENT (1) Microglial BDNF contributes to self-renewal and density of microglia in the brain. (2) Selective ablation of BDNF in microglia stimulates neural precursor proliferation. (3) Loss of microglial BDNF augments working memory following traumatic brain injury. (4) Benefits of repopulating microglia on brain injury are not mediated via microglial BDNF.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Hipocampo/fisiología , Microglía/metabolismo , Regeneración Nerviosa/genética , Regeneración Nerviosa/fisiología , Neurogénesis/genética , Neurogénesis/fisiología , Animales , Proliferación Celular , Supervivencia Celular/genética , Dendritas/ultraestructura , Espinas Dendríticas/ultraestructura , Encefalitis/inducido químicamente , Encefalitis/patología , Aprendizaje/fisiología , Memoria/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células-Madre Neurales/fisiología , Células-Madre Neurales/ultraestructura
12.
STAR Protoc ; 1(3): 100211, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33377105

RESUMEN

The advent of tools enabling the direct manipulation of microglia has furthered our understanding of their role in health and disease. Here, we present a detailed protocol allowing for microglia turnover in adult CX3CR1creERT2 × iDTR or CX3CR1creERT2 × iDTR × tdTomatoflox mice, either in a brain-wide or region-specific manner, and their subsequent isolation for downstream applications. This protocol may be used to explore microglia biology and their putative region-specific heterogeneous functional diversity, expanding our understanding of their importance in various neuroinflammatory conditions. For complete details on the use and execution of this protocol, please refer to Willis et al. (2020).


Asunto(s)
Citometría de Flujo/métodos , Microglía/citología , Microglía/fisiología , Animales , Encéfalo/citología , Modelos Animales de Enfermedad , Hipocampo/citología , Inyecciones/instrumentación , Inyecciones/métodos , Proteínas Luminiscentes , Ratones , Microglía/metabolismo , Proteína Fluorescente Roja
13.
Sci Rep ; 10(1): 19269, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33159114

RESUMEN

Hippocampal atrophy and cognitive decline are common sequelae of many neurodegenerative disorders, including stroke. To determine whether cognitive decline can be ameliorated by exercise-induced neurogenesis, C57BL/6 mice in which a unilateral hippocampal injury had been induced by injecting the vasoconstrictor endothelin-1 into their right hippocampus, were run voluntarily for 21 days on a running-wheel. We found the severe deficits in spatial learning, as detected by active place-avoidance task, following injury were almost completely restored in animals that ran whereas those that did not run showed no improvement. We show the increase in neurogenesis found in both the injured and contralateral hippocampi following running was responsible for the restoration of learning since bilateral ablation of newborn doublecortin (DCX)-positive neurons abrogated the cognitive improvement, whereas unilateral ablations of DCX-positive neurons did not prevent recovery, demonstrating that elevated neurogenesis in either the damaged or intact hippocampus is sufficient to reverse hippocampal injury-induced deficits.


Asunto(s)
Hipocampo , Discapacidades para el Aprendizaje , Neurogénesis , Condicionamiento Físico Animal , Animales , Proteína Doblecortina , Hipocampo/lesiones , Hipocampo/fisiopatología , Discapacidades para el Aprendizaje/fisiopatología , Discapacidades para el Aprendizaje/terapia , Ratones , Ratones Transgénicos
14.
Cell ; 180(5): 833-846.e16, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32142677

RESUMEN

Cognitive dysfunction and reactive microglia are hallmarks of traumatic brain injury (TBI), yet whether these cells contribute to cognitive deficits and secondary inflammatory pathology remains poorly understood. Here, we show that removal of microglia from the mouse brain has little effect on the outcome of TBI, but inducing the turnover of these cells through either pharmacologic or genetic approaches can yield a neuroprotective microglial phenotype that profoundly aids recovery. The beneficial effects of these repopulating microglia are critically dependent on interleukin-6 (IL-6) trans-signaling via the soluble IL-6 receptor (IL-6R) and robustly support adult neurogenesis, specifically by augmenting the survival of newborn neurons that directly support cognitive function. We conclude that microglia in the mammalian brain can be manipulated to adopt a neuroprotective and pro-regenerative phenotype that can aid repair and alleviate the cognitive deficits arising from brain injury.


Asunto(s)
Lesiones Traumáticas del Encéfalo/terapia , Interleucina-6/genética , Receptores de Interleucina-6/genética , Regeneración/genética , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/patología , Disfunción Cognitiva/genética , Disfunción Cognitiva/patología , Disfunción Cognitiva/terapia , Modelos Animales de Enfermedad , Humanos , Inflamación/genética , Inflamación/patología , Ratones , Microglía/metabolismo , Microglía/patología , Neuronas/metabolismo , Neuronas/patología , Fármacos Neuroprotectores/uso terapéutico , Transducción de Señal/genética
15.
Front Behav Neurosci ; 11: 197, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29089878

RESUMEN

Studies on the role of the hippocampus in higher cognitive functions such as spatial learning and memory in rodents are reliant upon robust and objective behavioral tests. This protocol describes one such test-the active place avoidance (APA) task. This behavioral task involves the mouse continuously integrating visual cues to orientate itself within a rotating arena in order to actively avoid a shock zone, the location of which remains constant relative to the room. This protocol details the step-by-step procedures for a novel paradigm of the hippocampal-dependent APA task, measuring acquisition of spatial learning during a single 20-min trial (i.e., short-term memory), with spatial memory encoding and retrieval (i.e., long-term memory) assessed by trials conducted over consecutive days. Using the APA task, cognitive flexibility can be assessed using the reversal learning paradigm, as this increases the cognitive load required for efficient performance in the task. In addition to a detailed experimental protocol, this paper also describes the range of its possible applications, the expected key results, as well as the analytical methods to assess the data, and the pitfalls/troubleshooting measures. The protocol described herein is highly robust and produces replicable results, thus presenting an important paradigm that enables the assessment of subtle short-term changes in spatial learning and memory, such as those observed for many experimental interventions.

16.
Brain Res Bull ; 132: 150-159, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28552674

RESUMEN

Birth of new neurons in the hippocampus persists in the brain of adult mammals and critically underpins optimal learning and memory. The process of adult neurogenesis is significantly reduced following brain irradiation and this correlates with impaired cognitive function. In this study, we aimed to compare the long-term effects of two environmental paradigms (i.e. enriched environment and exercise) on adult neurogenesis following high-dose (10Gy) total body irradiation. When housed in standard (sedentary) conditions, irradiated mice revealed a long-lasting (up to 4 months) deficit in neurogenesis in the granule cell layer of the dentate gyrus, the region that harbors the neurogenic niche. This depressive effect of total body irradiation on adult neurogenesis was partially alleviated by exposure to enriched environment but not voluntary exercise, where mice were single-housed with unlimited access to a running wheel. Exposure to voluntary exercise, but not enriched environment, did lead to significant increases in microglia density in the granule cell layer of the hippocampus; our study shows that these changes result from local microglia proliferation rather than recruitment and infiltration of circulating Cx3cr1+/gfp blood monocytes that subsequently differentiate into microglia-like cells. In summary, latent neural precursor cells remain present in the neurogenic niche of the adult hippocampus up to 8 weeks following high-dose total body irradiation. Environmental enrichment can partially restore the adult neurogenic process in this part of the brain following high-dose irradiation, and this was found to be independent of blood monocyte-derived microglia presence.


Asunto(s)
Ambiente , Hipocampo/fisiopatología , Hipocampo/efectos de la radiación , Neurogénesis , Carrera , Irradiación Corporal Total/efectos adversos , Células Madre Adultas/patología , Células Madre Adultas/fisiología , Células Madre Adultas/efectos de la radiación , Animales , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Hipocampo/patología , Vivienda para Animales , Ratones Endogámicos BALB C , Ratones Transgénicos , Microglía/patología , Microglía/fisiología , Microglía/efectos de la radiación , Monocitos/patología , Monocitos/fisiología , Monocitos/efectos de la radiación , Células-Madre Neurales/patología , Células-Madre Neurales/fisiología , Células-Madre Neurales/efectos de la radiación , Neurogénesis/fisiología , Neurogénesis/efectos de la radiación , Dosis de Radiación , Distribución Aleatoria , Carrera/fisiología , Conducta Sedentaria , Volición
17.
Ann Clin Transl Neurol ; 3(7): 495-511, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27386499

RESUMEN

OBJECTIVE: Traumatic spinal cord injury (SCI) elicits immediate neural cell death, axonal damage, and disruption of the blood-spinal cord barrier, allowing circulating immune cells and blood proteins into the spinal parenchyma. The inflammatory response to SCI involves robust complement system activation, which contributes to secondary injury and impairs neurological recovery. This study aimed to determine whether intravenous immunoglobulin (IVIg), an FDA-approved treatment for inflammatory conditions, can scavenge complement activation products and improve recovery from contusive SCI. METHODS: We used functional testing, noninvasive imaging, and detailed postmortem analysis to assess whether IVIg therapy is effective in a mouse model of severe contusive SCI. RESULTS: IVIg therapy at doses of 0.5-2 g/kg improved the functional and histopathological outcomes from SCI, conferring protection against lesion enlargement, demyelination, central canal dilation, and axonal degeneration. The benefits of IVIg were detectable through noninvasive diffusion tensor imaging (DTI), with IVIg treatment counteracting the progressive SCI-induced increase in radial diffusivity (RD) in white matter. Diffusion indices significantly correlated with the functional performance of individual mice and accurately predicted the degree of myelin preservation. Further experiments revealed that IVIg therapy reduced the presence of complement activation products and phagocytically active macrophages at the lesion site, providing insight as to its mechanisms of action. INTERPRETATION: Our findings highlight the potential of using IVIg as an immunomodulatory treatment for SCI, and the value of DTI to assess tissue damage and screen for the efficacy of candidate intervention strategies in preclinical models of SCI, both quantitatively and noninvasively.

18.
Glia ; 62(2): 247-58, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24311472

RESUMEN

Microglia positively affect neural progenitor cell physiology through the release of inflammatory mediators or trophic factors. We demonstrated previously that reactive microglia foster K(ATP) -channel expression and that blocking this channel using glibenclamide administration enhances striatal neurogenesis after stroke. In this study, we investigated whether the microglial K(ATP) -channel directly influences the activation of neural precursor cells (NPCs) from the subventricular zone using transgenic Csf1r-GFP mice. In vitro exposure of NPCs to lipopolysaccharide and interferon-gamma resulted in a significant decrease in precursor cell number. The complete removal of microglia from the culture or exposure to enriched microglia culture also decreased the precursor cell number. The addition of glibenclamide rescued the negative effects of enriched microglia on neurosphere formation and promoted a ∼20% improvement in precursor cell number. Similar results were found using microglial-conditioned media from isolated microglia. Using primary mixed glial and pure microglial cultures, glibenclamide specifically targeted reactive microglia to restore neurogenesis and increased the microglial production of the chemokine monocyte chemoattractant protein-1 (MCP-1). These findings provide the first direct evidence that the microglial K(ATP) -channel is a regulator of the proliferation of NPCs under inflammatory conditions.


Asunto(s)
Inflamación/metabolismo , Canales KATP/antagonistas & inhibidores , Microglía/metabolismo , Células-Madre Neurales/citología , Neurogénesis/fisiología , Animales , Células Cultivadas , Mediadores de Inflamación/metabolismo , Interferón gamma/metabolismo , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/inmunología , Neurogénesis/inmunología , Neuronas/efectos de los fármacos , Neuronas/inmunología , Neuronas/metabolismo
19.
J Neurosci ; 33(15): 6603-13, 2013 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-23575857

RESUMEN

It is now widely accepted that hippocampal neurogenesis underpins critical cognitive functions, such as learning and memory. To assess the behavioral importance of adult-born neurons, we developed a novel knock-in mouse model that allowed us to specifically and reversibly ablate hippocampal neurons at an immature stage. In these mice, the diphtheria toxin receptor (DTR) is expressed under control of the doublecortin (DCX) promoter, which allows for specific ablation of immature DCX-expressing neurons after administration of diphtheria toxin while leaving the neural precursor pool intact. Using a spatially challenging behavioral test (a modified version of the active place avoidance test), we present direct evidence that immature DCX-expressing neurons are required for successful acquisition of spatial learning, as well as reversal learning, but are not necessary for the retrieval of stored long-term memories. Importantly, the observed learning deficits were rescued as newly generated immature neurons repopulated the granule cell layer upon termination of the toxin treatment. Repeat (or cyclic) depletion of immature neurons reinstated behavioral deficits if the mice were challenged with a novel task. Together, these findings highlight the potential of stimulating neurogenesis as a means to enhance learning.


Asunto(s)
Reacción de Prevención/fisiología , Técnicas de Sustitución del Gen/psicología , Hipocampo/fisiología , Memoria/fisiología , Proteínas Asociadas a Microtúbulos/fisiología , Células-Madre Neurales/fisiología , Neuropéptidos/fisiología , Aprendizaje Inverso/fisiología , Animales , Células Cultivadas , Corteza Cerebral , Proteínas del Citoesqueleto/biosíntesis , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Técnicas de Sustitución del Gen/métodos , Factor de Crecimiento Similar a EGF de Unión a Heparina , Péptidos y Proteínas de Señalización Intercelular/genética , Masculino , Memoria a Largo Plazo/fisiología , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/genética , Modelos Animales , Degeneración Nerviosa/genética , Proteínas del Tejido Nervioso/biosíntesis , Neurogénesis/fisiología , Neuropéptidos/genética , Percepción Espacial/fisiología
20.
Stem Cells Dev ; 22(16): 2341-5, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23517283

RESUMEN

Neurogenesis occurs continuously in two brain regions of adult mammals, underpinned by a pool of resident neural stem cells (NSCs) that can differentiate into all neural cell types. To advance our understanding of NSC function and to develop therapeutic and diagnostic approaches, it is important to accurately identify and enrich for NSCs. There are no definitive markers for the identification and enrichment of NSCs present in the mouse brain. Recently, a fluorescent rosamine dye, CDy1, has been identified as a label for pluripotency in cultured human embryonic and induced pluripotent stem cells. As similar cellular characteristics may enable the uptake and retention of CDy1 by other stem cell populations, we hypothesized that this dye may also enrich for primary NSCs from the mouse brain. Because the subventricular zone (SVZ) and the hippocampus represent brain regions that are highly enriched for NSCs in adult mammals, we sampled cells from these areas to test this hypothesis. These experiments revealed that CDy1 staining indeed allows for enrichment and selection of all neurosphere-forming cells from both the SVZ and the hippocampus. We next examined the effectiveness of CDy1 to select for NSCs derived from the SVZ of aged animals, where the total pool of NSCs present is significantly lower than in young animals. We found that CDy1 effectively labels the NSCs in adult and aged animals as assessed by the neurosphere assay and reflects the numbers of NSCs present in aged animals. CDy1, therefore, appears to be a novel marker for enrichment of NSCs in primary brain tissue preparations.


Asunto(s)
Antracenos/análisis , Colorantes Fluorescentes/análisis , Hipocampo/citología , Células Madre Pluripotentes Inducidas/citología , Ventrículos Laterales/citología , Morfolinas/análisis , Células-Madre Neurales/citología , Esferoides Celulares/citología , Factores de Edad , Animales , Biomarcadores/análisis , Diferenciación Celular , Femenino , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Neurogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...