Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Immunobiology ; 226(1): 152047, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33340828

RESUMEN

Polymorphonuclear neutrophilic granulocytes (PMNs) are extremely important in defense of the organism against infections and in inflammatory processes including neuroinflammation and pain sensation. Different subtypes of nicotinic acetylcholine receptors (nAChRs) are involved in modulation of PMN activities. Earlier we determined expression of α2-7, α9, ß3, ß4 subunits and regulatory role of α7 and α3ß2 nAChR subtypes in functions of inflammatory PMNs. Other authors detected mRNA of α9 subunit in bone marrow neutrophils (BM-PMNs). Murine BM-PMNs coming out from the bone marrow, where they develop, to blood were characterized as mature. There was no data for α10 and for the presence of functionally active α9α10 nAChRs in BM-PMNs. Here we detected for the first time mRNA expression of the α10 nAChR subunit in BM-PMNs and confirmed the expression of mRNA for α9 nAChR. With the help of α-conotoxins RgIA and Vc1.1, highly selective antagonists of α9α10 nAChRs, we have revealed participation of α9 and/or α9α10 nAChRs in regulation of cytosolic Ca2+ concentration, cell adhesion, and in generation of reactive oxygen species (ROS). Nicotine, choline, RgIA, and Vc1.1 induced Ca2+ transients in BM-PMNs, enhanced cell adhesiveness and decreased production of ROS indicating involvement of α9, possibly co-assembled with α10, nAChRs in the BM-PMN activity for recruitment and cytotoxicity.


Asunto(s)
Células de la Médula Ósea/metabolismo , Granulocitos/metabolismo , Receptores Nicotínicos/metabolismo , Animales , Señalización del Calcio , Adhesión Celular , Células Cultivadas , Conotoxinas/metabolismo , Citotoxicidad Inmunológica , Ratones , Ratones Endogámicos BALB C , Inflamación Neurogénica , Dolor , ARN Mensajero/genética , Especies Reactivas de Oxígeno/metabolismo , Receptores Nicotínicos/genética , Sensación
2.
J Venom Res ; 10: 23-29, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33024544

RESUMEN

Venoms of viperid snakes affect mostly hemostasis, while C-type lectin-like proteins (CTLPs), one of the main components of viperid venoms, act as anticoagulants, procoagulants, or agonists/antagonists of platelet activation. However, we have shown earlier that CTLPs from the saw-scaled viper Echis multisquamatus, called emunarecins EM1 and EM2, were able to inhibit nicotinic acetylcholine receptors (nAChRs) in neurons of a pond snail (Lymnaea stagnalis). Here we analysed the structure of the emunarecins by mass spectrometry and report that EM1 and EM2 inhibit fluorescent α-bungarotoxin binding to both muscle-type nAChRs from Torpedo californica and human neuronal α7 nAChRs. EM1 at 23µM and EM2 at 9µM almost completely prevented fluorecsent α-bungarotoxin binding to muscle-type nAChRs. Interaction with human neuronal α7 nAChR was weaker; EM1 at the concentration of 23µM blocked the α-bungarotoxin binding only by about 40% and EM2 at 9µM by about 20%. The efficiency of the EM2 interaction with nAChRs was comparable to that of a non-conventional toxin, WTX, from Naja kaouthia cobra venom. Together with the data obtained earlier, these results show that CTLPs may represent new nAChR ligands.

3.
J Neurochem ; 155(3): 274-284, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32248535

RESUMEN

Excitatory α7 neuronal nicotinic receptors (nAChR) are widely expressed in the central and peripheral nervous and immune systems and are important for learning, memory, and immune response regulation. Specific α7 nAChR ligands, including positive allosteric modulators are promising to treat cognitive disorders, inflammatory processes, and pain. One of them, PNU-120596, highly increased the neuron response to α7 agonists and retarded desensitization, showing selectivity for α7 as compared to heteromeric nAChRs, but was not examined at the inhibitory ligand-gated channels. We studied PNU-120596 action on anion-conducting channels using voltage-clamp techniques: it slightly potentiated the response of human glycine receptors expressed in PC12 cells, of rat GABAA receptors in cerebellar Purkinje cells and mouse GABAA Rs heterologously expressed in Xenopus oocytes. On the contrary, PNU-120596 exerted an inhibitory effect on the receptors mediating anion currents in Lymnaea stagnalis neurons: two nAChR subtypes, GABA and glutamate receptors. Acceleration of the current decay, contrary to slowing down desensitization in mammalian α7 nAChR, was observed in L. stagnalis neurons predominantly expressing one of the two nAChR subtypes. Thus, PNU-120596 effect on these anion-selective nAChRs was just opposite to the action on the mammalian cation-selective α7 nAChRs. A comparison of PNU-120596 molecule docked to the models of transmembrane domains of the human α7 AChR and two subunits of L. stagnalis nAChR demonstrated some differences in contacts with the amino acid residues important for PNU-120596 action on the α7 nAChR. Thus, our results show that PNU-120596 action depends on a particular subtype of these Cys-loop receptors.


Asunto(s)
Canales de Cloruro/metabolismo , Isoxazoles/farmacología , Canales Iónicos Activados por Ligandos/metabolismo , Compuestos de Fenilurea/farmacología , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Secuencia de Aminoácidos , Animales , Células Cultivadas , Canales de Cloruro/antagonistas & inhibidores , Canales de Cloruro/genética , Femenino , Humanos , Canales Iónicos Activados por Ligandos/antagonistas & inhibidores , Canales Iónicos Activados por Ligandos/genética , Lymnaea , Células PC12 , Ratas , Ratas Wistar , Xenopus laevis , Receptor Nicotínico de Acetilcolina alfa 7/genética
4.
PLoS One ; 12(10): e0186206, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29023569

RESUMEN

Phospholipases A2 (PLA2s) are enzymes found throughout the animal kingdom. They hydrolyze phospholipids in the sn-2 position producing lysophospholipids and unsaturated fatty acids, agents that can damage membranes. PLA2s from snake venoms have numerous toxic effects, not all of which can be explained by phospholipid hydrolysis, and each enzyme has a specific effect. We have earlier demonstrated the capability of several snake venom PLA2s with different enzymatic, cytotoxic, anticoagulant and antiproliferative properties, to decrease acetylcholine-induced currents in Lymnaea stagnalis neurons, and to compete with α-bungarotoxin for binding to nicotinic acetylcholine receptors (nAChRs) and acetylcholine binding protein. Since nAChRs are implicated in postsynaptic and presynaptic activities, in this work we probe those PLA2s known to have strong presynaptic effects, namely ß-bungarotoxin from Bungarus multicinctus and crotoxin from Crotalus durissus terrificus. We also wished to explore whether mammalian PLA2s interact with nAChRs, and have examined non-toxic PLA2 from porcine pancreas. It was found that porcine pancreatic PLA2 and presynaptic ß-bungarotoxin blocked currents mediated by nAChRs in Lymnaea neurons with IC50s of 2.5 and 4.8 µM, respectively. Crotoxin competed with radioactive α-bungarotoxin for binding to Torpedo and human α7 nAChRs and to the acetylcholine binding protein. Pancreatic PLA2 interacted similarly with these targets; moreover, it inhibited radioactive α-bungarotoxin binding to the water-soluble extracellular domain of human α9 nAChR, and blocked acetylcholine induced currents in human α9α10 nAChRs heterologously expressed in Xenopus oocytes. These and our earlier results show that all snake PLA2s, including presynaptically active crotoxin and ß-bungarotoxin, as well as mammalian pancreatic PLA2, interact with nAChRs. The data obtained suggest that this interaction may be a general property of all PLA2s, which should be proved by further experiments.


Asunto(s)
Neuronas/fisiología , Páncreas/enzimología , Fosfolipasas A2/farmacología , Venenos de Serpiente/enzimología , Acetilcolina/metabolismo , Animales , Bungarotoxinas/farmacología , Crotoxina/farmacología , Humanos , Lymnaea/citología , Neuronas/efectos de los fármacos , Receptores Nicotínicos/metabolismo , Porcinos/metabolismo , Xenopus laevis/genética
5.
Toxicon ; 121: 70-76, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27576061

RESUMEN

Phospholipase A2 (named bitanarin) possessing capability to block nicotinic acetylcholine receptors (nAChRs) was isolated earlier (Vulfius et al., 2011) from puff adder Bitis arietans venom. Further studies indicated that low molecular weight fractions of puff adder venom inhibit nAChRs as well. In this paper, we report on isolation from this venom and characterization of three novel peptides called baptides 1, 2 and 3 that reversibly block nAChRs. To isolate the peptides, the venom of B. arietans was fractionated by gel-filtration and reversed phase chromatography. The amino acid sequences of peptides were established by de novo sequencing using MALDI mass spectrometry. Baptide 1 comprised 7, baptides 2 and 3-10 amino acid residues, the latter being acetylated at the N-terminus. This is the first indication for the presence of such post-translational modification in snake venom proteins. None of the peptides contain cysteine residues. For biological activity studies the peptides were prepared by solid phase peptide synthesis. Baptide 3 and 2 blocked acetylcholine-elicited currents in isolated Lymnaea stagnalis neurons with IC50 of about 50 µM and 250 µM, respectively. In addition baptide 2 blocked acetylcholine-induced currents in muscle nAChR heterologously expressed in Xenopus oocytes with IC50 of about 3 µM. The peptides did not compete with radioactive α-bungarotoxin for binding to Torpedo and α7 nAChRs at concentration up to 200 µM that suggests non-competitive mode of inhibition. Calcium imaging studies on α7 and muscle nAChRs heterologously expressed in mouse neuroblastoma Neuro2a cells showed that on α7 receptor baptide 2 inhibited acetylcholine-induced increasing intracellular calcium concentration with IC50 of 20.6 ± 3.93 µM. On both α7 and muscle nAChRs the suppression of maximal response to acetylcholine by about 50% was observed at baptide 2 concentration of 25 µM, the value being close to IC50 on α7 nAChR. These data are in accord with non-competitive inhibition as follows from α-bungarotoxin binding experiments. The described peptides are the shortest peptides without disulfide bridges isolated from animal venom and capable to inhibit nAChR by non-competitive way.


Asunto(s)
Antagonistas Nicotínicos/farmacología , Péptidos/farmacología , Receptores Nicotínicos/efectos de los fármacos , Venenos de Víboras/química , Animales , Lymnaea/efectos de los fármacos , Péptidos/química , Péptidos/aislamiento & purificación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Viperidae , Xenopus
6.
Immunobiology ; 221(7): 761-72, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26965141

RESUMEN

Participation of nicotinic acetylcholine receptors (nAChRs) in functioning of polymorphonuclear neutrophils (PMNs) isolated from inflammatory site of mice and expression of different nAChR subunits were studied. Nicotine and acetylcholine (ACh) modified respiratory burst induced by a chemotactic peptide N-formyl-MLF in neutrophils of male (but not female) mice. Antagonists of nAChRs α-cobratoxin (αCTX), α-conotoxins MII and [A10L]PnIA at concentrations of 0.01-5µM, 0.2µM and 1µM, respectively, eliminated nAChR agonist effects. ACh also affected adhesion of PMNs, this effect was also prevented by αCTX (100nM) and MII (1nM). Neutrophils of female mice after chronic nicotine consumption acquired sensitivity to nAChR agonists. Changes of free intracellular Ca(2+) concentration in neutrophils under the action of nAChR ligands were analyzed. In cells with no Ca(2+) oscillations and relatively low resting level of intracellular Ca(2+), nicotine triggered Ca(2+)-spikes, the lag of the response shortened with increasing nicotine concentration. A nicotinic antagonist caramiphen strongly decreased the effect of nicotine. RT-PCR analysis revealed mRNAs of α2, α3, α4, α5, α6, α7, α9, ß2, ß3, and ß4 nAChR subunits. Specific binding of [(125)I]-α-bungarotoxin was demonstrated. Thus in view of the effects and binding characteristics the results obtained suggest a regulatory role of α7, α3ß2 or α6* nAChR types in specific functions of PMNs.


Asunto(s)
Inflamación/inmunología , Neutrófilos/inmunología , Receptores Nicotínicos/metabolismo , Acetilcolina/metabolismo , Animales , Señalización del Calcio , Adhesión Celular , Células Cultivadas , Proteínas Neurotóxicas de Elápidos/farmacología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , N-Formilmetionina Leucil-Fenilalanina , Nicotina/metabolismo , Subunidades de Proteína/genética , Receptores Nicotínicos/genética , Estallido Respiratorio
7.
PLoS One ; 9(12): e115428, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25522251

RESUMEN

Phospholipases A2 represent the most abundant family of snake venom proteins. They manifest an array of biological activities, which is constantly expanding. We have recently shown that a protein bitanarin, isolated from the venom of the puff adder Bitis arietans and possessing high phospholipolytic activity, interacts with different types of nicotinic acetylcholine receptors and with the acetylcholine-binding protein. To check if this property is characteristic to all venom phospholipases A2, we have studied the capability of these enzymes from other snakes to block the responses of Lymnaea stagnalis neurons to acetylcholine or cytisine and to inhibit α-bungarotoxin binding to nicotinic acetylcholine receptors and acetylcholine-binding proteins. Here we present the evidence that phospholipases A2 from venoms of vipers Vipera ursinii and V. nikolskii, cobra Naja kaouthia, and krait Bungarus fasciatus from different snake families suppress the acetylcholine- or cytisine-elicited currents in L. stagnalis neurons and compete with α-bungarotoxin for binding to muscle- and neuronal α7-types of nicotinic acetylcholine receptor, as well as to acetylcholine-binding proteins. As the phospholipase A2 content in venoms is quite high, under some conditions the activity found may contribute to the deleterious venom effects. The results obtained suggest that the ability to interact with nicotinic acetylcholine receptors may be a general property of snake venom phospholipases A2, which add a new target to the numerous activities of these enzymes.


Asunto(s)
Neuronas/efectos de los fármacos , Antagonistas Nicotínicos/farmacología , Fosfolipasas A2/farmacología , Venenos de Serpiente/farmacología , Potenciales de Acción , Secuencia de Aminoácidos , Animales , Lymnaea , Datos de Secuencia Molecular , Neuronas/fisiología , Antagonistas Nicotínicos/química , Unión Proteica , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Venenos de Serpiente/química
8.
Toxicon ; 57(5): 787-93, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21333664

RESUMEN

The venoms of snakes from Viperidae family mainly influence the function of various blood components. However, the published data indicate that these venoms contain also neuroactive components, the most studied being neurotoxic phospholipases A2 (PLA2s). Earlier we have shown (Gorbacheva et al., 2008) that several Viperidae venoms blocked nicotinic acetylcholine receptors (nAChRs) and voltage-gated Ca²+ channels in isolated identified neurons of the fresh-water snail Lymnaea stagnalis. In this paper, we report on isolation from puff adder Bitis arietans venom and characterization of a novel protein bitanarin that reversibly blocks nAChRs. To isolate the protein, the venom of B. arietans was fractionated by gel-filtration, ion-exchange and reversed phase chromatography and fractions obtained were screened for capability to block nAChRs. The isolated protein competed with [¹²5I]iodinated α-bungarotoxin for binding to human α7 and Torpedo californica nAChRs, as well as to acetylcholine-binding protein from L. stagnalis, the IC50 being 20 ± 1.5, 4.3 ± 0.2, and 10.6 ± 0.6 µM, respectively. It also blocked reversibly acetylcholine-elicited current in isolated L. stagnalis neurons with IC50 of 11.4 µM. Mass-spectrometry analysis determined the molecular mass of 27.4 kDa and the presence of 28 cysteine residues forming 14 disulphide bonds. Edman degradation of the protein and tryptic fragments showed its similarity to PLA2s from snake venoms. Indeed, the protein possessed high PLA2 activity, which was 1.95 mmol/min/µmol. Bitanarin is the first described PLA2 that contains 14 disulphide bonds and the first nAChR blocker possessing PLA2 activity.


Asunto(s)
Antagonistas Nicotínicos/metabolismo , Fosfolipasas A2/genética , Fosfolipasas A2/aislamiento & purificación , Venenos de Víboras/enzimología , Viperidae , Animales , Fraccionamiento Químico , Cromatografía en Gel , Cromatografía por Intercambio Iónico , Humanos , Espectrometría de Masas , Antagonistas Nicotínicos/aislamiento & purificación , Receptores Nicotínicos/metabolismo
9.
J Mol Neurosci ; 30(1-2): 77-8, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17192636

RESUMEN

Alpha-conotoxins, neurotoxic peptides from poisonous Conus marine snails, can be subdivided into several groups targeting distinct subtypes of nicotinic acetylcholine receptors (nAChRs). Such alpha-conotoxins as, for example, GI, MI, or SIA potently block muscle-type nAChRs from muscles and from the electric organ of Torpedo ray, whereas others target distinct neuronal nAChRs: alpha-conotoxins ImI and PnIB block pentaoligomeric alpha7 nAChRs, and alpha-conotoxins MII or PnIA inhibit heteromeric nAChRs made of combinations of alpha3 or alpha6 subunits with beta2 subunit. alpha-Conotoxins interact with N-terminal extracellular ligand-binding domains of nAChRs and are indispensable tools for distinguishing various subtypes of AChRs at normal and pathological states. Although many alpha-conotoxins have been isolated from Conus venoms, there is still a great need in more potent and selective tools, which in principle can be obtained by design and synthesis of novel alpha-conotoxin analogs.


Asunto(s)
Acetilcolina/metabolismo , Conotoxinas/farmacocinética , Receptores Nicotínicos/metabolismo , Animales , Proteínas Portadoras/metabolismo , Neuronas/fisiología , Torpedo
10.
FEBS J ; 273(19): 4470-81, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16956365

RESUMEN

Alpha-conotoxins from Conus snails are indispensable tools for distinguishing various subtypes of nicotinic acetylcholine receptors (nAChRs), and synthesis of alpha-conotoxin analogs may yield novel antagonists of higher potency and selectivity. We incorporated additional positive charges into alpha-conotoxins and analyzed their binding to nAChRs. Introduction of Arg or Lys residues instead of Ser12 in alpha-conotoxins GI and SI, or D12K substitution in alpha-conotoxin SIA increased the affinity for both the high- and low-affinity sites in membrane-bound Torpedo californica nAChR. The effect was most pronounced for [D12K]SIA with 30- and 200-fold enhancement for the respective sites, resulting in the most potent alpha-conotoxin blocker of the Torpedo nAChR among those tested. Similarly, D14K substitution in alpha-conotoxin [A10L]PnIA, a blocker of neuronal alpha7 nAChR, was previously shown to increase the affinity for this receptor and endowed [A10L,D14K]PnIA with the capacity to distinguish between acetylcholine-binding proteins from the mollusks Lymnaea stagnalis and Aplysia californica. We found that [A10L,D14K]PnIA also distinguishes two alpha7-like anion-selective nAChR subtypes present on identified neurons of L. stagnalis: [D14K] mutation affected only slightly the potency of [A10L]PnIA to block nAChRs on neurons with low sensitivity to alpha-conotoxin ImI, but gave a 50-fold enhancement of blocking activity in cells with high sensitivity to ImI. Therefore, the introduction of an additional positive charge in the C-terminus of alpha-conotoxins targeting some muscle or neuronal nAChRs made them more discriminative towards the respective nAChR subtypes. In the case of muscle-type alpha-conotoxin [D12K]SIA, the contribution of the Lys12 positive charge to enhanced affinity towards Torpedo nAChR was rationalized with the aid of computer modeling.


Asunto(s)
Conotoxinas/metabolismo , Receptores Nicotínicos/metabolismo , Torpedo/metabolismo , Secuencia de Aminoácidos , Animales , Canales de Cloruro/efectos de los fármacos , Dicroismo Circular , Conotoxinas/síntesis química , Conotoxinas/química , Modelos Moleculares , Datos de Secuencia Molecular , Subunidades de Proteína , Receptores Nicotínicos/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...