Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 18(9): e1010380, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36095003

RESUMEN

Drosophila Insulin-Producing Cells (IPCs) are the main production site of the Drosophila Insulin-like peptides or dilps which have key roles in regulating growth, development, reproduction, lifespan and metabolism. To better understand the signalling pathways and transcriptional networks that are active in the IPCs we queried publicly available transcriptome data of over 180 highly inbred fly lines for dilp expression and used dilp expression as the input for a Genome-wide association study (GWAS). This resulted in the identification of variants in 125 genes that were associated with variation in dilp expression. The function of 57 of these genes in the IPCs was tested using an RNAi-based approach. We found that IPC-specific depletion of most genes resulted in differences in expression of one or more of the dilps. We then elaborated further on one of the candidate genes with the strongest effect on dilp expression, Homothorax, a transcription factor known for its role in eye development. We found that Homothorax and its binding partner Extradenticle are involved in regulating dilp2, -3 and -5 expression and that genetic depletion of both TFs shows phenotypes associated with reduced insulin signalling. Furthermore, we provide evidence that other transcription factors involved in eye development are also functional in the IPCs. In conclusion, we showed that this expression level-based GWAS approach identified genetic regulators implicated in IPC function and dilp expression.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Estudio de Asociación del Genoma Completo , Insulina/genética , Insulina/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Front Endocrinol (Lausanne) ; 12: 600251, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276554

RESUMEN

The insulin-producing cells (IPCs), a group of 14 neurons in the Drosophila brain, regulate numerous processes, including energy homeostasis, lifespan, stress response, fecundity, and various behaviors, such as foraging and sleep. Despite their importance, little is known about the development and the factors that regulate morphological and functional differentiation of IPCs. In this study, we describe the use of a new transgenic reporter to characterize the role of the Drosophila L1-CAM homolog Neuroglian (Nrg), and the transmembrane Semaphorin-1a (Sema-1a) and its receptor Plexin A (PlexA) in the differentiation of the insulin-producing neurons. Loss of Nrg results in defasciculation and abnormal neurite branching, including ectopic neurites in the IPC neurons. Cell-type specific RNAi knockdown experiments reveal that Nrg, Sema-1a and PlexA are required in IPCs and glia to control normal morphological differentiation of IPCs albeit with a stronger contribution of Nrg and Sema-1a in glia and of PlexA in the IPCs. These observations provide new insights into the development of the IPC neurons and identify a novel role for Sema-1a in glia. In addition, we show that Nrg, Sema-1a and PlexA in glia and IPCs not only regulate morphological but also functional differentiation of the IPCs and that the functional deficits are likely independent of the morphological phenotypes. The requirements of nrg, Sema-1a, and PlexA in IPC development and the expression of their vertebrate counterparts in the hypothalamic-pituitary axis, suggest that these functions may be evolutionarily conserved in the establishment of vertebrate endocrine systems.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Diferenciación Celular/fisiología , Proteínas de Drosophila/metabolismo , Insulinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Receptores de Superficie Celular/metabolismo , Semaforinas/metabolismo , Animales , Animales Modificados Genéticamente , Encéfalo/metabolismo , Forma de la Célula/fisiología , Drosophila
3.
Sci Rep ; 8(1): 16169, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30385846

RESUMEN

Cardiovascular disease associated with metabolic syndrome has a high prevalence, but the mechanistic basis of metabolic cardiomyopathy remains poorly understood. We characterised the cardiac transcriptome in a murine metabolic syndrome (MetS) model (LDLR-/-; ob/ob, DKO) relative to the healthy, control heart (C57BL/6, WT) and the transcriptional changes induced by ACE-inhibition in those hearts. RNA-Seq, differential gene expression and transcription factor analysis identified 288 genes differentially expressed between DKO and WT hearts implicating 72 pathways. Hallmarks of metabolic cardiomyopathy were increased activity in integrin-linked kinase signalling, Rho signalling, dendritic cell maturation, production of nitric oxide and reactive oxygen species in macrophages, atherosclerosis, LXR-RXR signalling, cardiac hypertrophy, and acute phase response pathways. ACE-inhibition had a limited effect on gene expression in WT (55 genes, 23 pathways), and a prominent effect in DKO hearts (1143 genes, 104 pathways). In DKO hearts, ACE-I appears to counteract some of the MetS-specific pathways, while also activating cardioprotective mechanisms. We conclude that MetS and control murine hearts have unique transcriptional profiles and exhibit a partially specific transcriptional response to ACE-inhibition.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/administración & dosificación , Aterosclerosis/genética , Enfermedades Cardiovasculares/genética , Síndrome Metabólico/tratamiento farmacológico , Receptores de LDL/genética , Anciano , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/etiología , Aterosclerosis/fisiopatología , Cardiotónicos/administración & dosificación , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/fisiopatología , Modelos Animales de Enfermedad , Corazón/efectos de los fármacos , Corazón/fisiopatología , Humanos , Redes y Vías Metabólicas/genética , Síndrome Metabólico/complicaciones , Síndrome Metabólico/genética , Síndrome Metabólico/fisiopatología , Ratones , Ratones Noqueados , Obesidad/tratamiento farmacológico , Obesidad/genética , Obesidad/fisiopatología , Peptidil-Dipeptidasa A/genética , Transcriptoma/efectos de los fármacos , Transcriptoma/genética
4.
Development ; 145(21)2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30266830

RESUMEN

Growth and maturation are coordinated processes in all animals. Integration of internal cues, such as signalling pathways, with external cues, such as nutritional status, is paramount for an orderly progression of development and growth. In Drosophila, this involves insulin and steroid signalling, but the underlying mechanisms and their coordination are incompletely understood. We show that bioactive 20-hydroxyecdysone production by the enzyme Shade in the fat body is a nutrient-dependent process. We demonstrate that under fed conditions, Shade plays a role in growth control. We identify the trachea and the insulin-producing cells in the brain as direct targets through which 20-hydroxyecdysone regulates insulin signalling. The identification of trachea-dependent regulation of insulin signalling exposes an important variable that may have been overlooked in other studies focusing on insulin signalling in Drosophila Our findings provide a potentially conserved, novel mechanism by which nutrition can modulate steroid hormone bioactivation, reveal an important caveat of a commonly used transgenic tool to study insulin-producing cell function, and yield further insights into how steroid and insulin signalling are coordinated during development to regulate growth and developmental timing.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Insulina/metabolismo , Transducción de Señal , Esteroides/metabolismo , Animales , Ecdisona/metabolismo , Ecdisterona/metabolismo , Cuerpo Adiposo/metabolismo , Técnicas de Silenciamiento del Gen , Factor I del Crecimiento Similar a la Insulina/metabolismo , Larva/metabolismo , Modelos Biológicos , Fenotipo , Receptores de Esteroides/metabolismo , Tráquea/metabolismo
5.
Proc Natl Acad Sci U S A ; 115(8): E1819-E1828, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29432146

RESUMEN

Symbiotic associations play a pivotal role in multicellular life by facilitating acquisition of new traits and expanding the ecological capabilities of organisms. In insects that are obligatorily dependent on intracellular bacterial symbionts, novel host cells (bacteriocytes) or organs (bacteriomes) have evolved for harboring beneficial microbial partners. The processes regulating the cellular life cycle of these endosymbiont-bearing cells, such as the cell-death mechanisms controlling their fate and elimination in response to host physiology, are fundamental questions in the biology of symbiosis. Here we report the discovery of a cell-death process involved in the degeneration of bacteriocytes in the hemipteran insect Acyrthosiphon pisum This process is activated progressively throughout aphid adulthood and exhibits morphological features distinct from known cell-death pathways. By combining electron microscopy, immunohistochemistry, and molecular analyses, we demonstrated that the initial event of bacteriocyte cell death is the cytoplasmic accumulation of nonautophagic vacuoles, followed by a sequence of cellular stress responses including the formation of autophagosomes in intervacuolar spaces, activation of reactive oxygen species, and Buchnera endosymbiont degradation by the lysosomal system. We showed that this multistep cell-death process originates from the endoplasmic reticulum, an organelle exhibiting a unique reticular network organization spread throughout the entire cytoplasm and surrounding Buchnera aphidicola endosymbionts. Our findings provide insights into the cellular and molecular processes that coordinate eukaryotic host and endosymbiont homeostasis and death in a symbiotic system and shed light on previously unknown aspects of bacteriocyte biological functioning.


Asunto(s)
Áfidos/microbiología , Buchnera/fisiología , Simbiosis/fisiología , Animales , Muerte Celular , Lisosomas
6.
Dis Model Mech ; 10(6): 705-716, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28331058

RESUMEN

Mutations in the proline dehydrogenase gene PRODH are linked to behavioral alterations in schizophrenia and as part of DiGeorge and velo-cardio-facial syndromes, but the role of PRODH in their etiology remains unclear. Here, we establish a Drosophila model to study the role of PRODH in behavioral disorders. We determine the distribution of the Drosophila PRODH homolog slgA in the brain and show that knockdown and overexpression of human PRODH and slgA in the lateral neurons ventral (LNv) lead to altered aggressive behavior. SlgA acts in an isoform-specific manner and is regulated by casein kinase II (CkII). Our data suggest that these effects are, at least partially, due to effects on mitochondrial function. We thus show that precise regulation of proline metabolism is essential to drive normal behavior and we identify Drosophila aggression as a model behavior relevant for the study of the mechanisms that are impaired in neuropsychiatric disorders.


Asunto(s)
Agresión , Relojes Biológicos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Neuronas/metabolismo , Prolina Oxidasa/genética , Esquizofrenia/genética , Homología de Secuencia de Ácido Nucleico , Animales , Encéfalo/metabolismo , Quinasa de la Caseína II/metabolismo , Proteínas de Drosophila/genética , Fenómenos Electrofisiológicos , Humanos , Masculino , Mitocondrias/metabolismo , Isoformas de Proteínas/metabolismo
7.
Nat Commun ; 6: 10115, 2015 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-26656654

RESUMEN

Genetic variation in brain size may provide the basis for the evolution of the brain and complex behaviours. The genetic substrate and the selective pressures acting on brain size are poorly understood. Here we use the Drosophila Genetic Reference Panel to map polymorphic variants affecting natural variation in mushroom body morphology. We identify 139 genes and 39 transcription factors and confirm effects on development and adult plasticity. We show correlations between morphology and aggression, sleep and lifespan. We propose that natural variation in adult brain size is controlled by interaction of the environment with gene networks controlling development and plasticity.


Asunto(s)
Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/genética , Cuerpos Pedunculados/anatomía & histología , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación de la Expresión Génica/fisiología , Masculino , Interferencia de ARN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Mol Neurodegener ; 7: 61, 2012 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-23249765

RESUMEN

BACKGROUND: A hallmark of Alzheimer's disease is the presence of senile plaques in human brain primarily containing the amyloid peptides Aß42 and Aß40. Many drug discovery efforts have focused on decreasing the production of Aß42 through γ-secretase inhibition. However, identification of γ-secretase inhibitors has also uncovered mechanism-based side effects. One approach to circumvent these side effects has been modulation of γ-secretase to shift Aß production to favor shorter, less amyloidogenic peptides than Aß42, without affecting the overall cleavage efficiency of the enzyme. This approach, frequently called γ-secretase modulation, appears more promising and has lead to the development of new therapeutic candidates for disease modification in Alzheimer's disease. RESULTS: Here we describe EVP-0015962, a novel small molecule γ-secretase modulator. EVP-0015962 decreased Aß42 in H4 cells (IC50 = 67 nM) and increased the shorter Aß38 by 1.7 fold at the IC50 for lowering of Aß42. AßTotal, as well as other carboxyl-terminal fragments of amyloid precursor protein, were not changed. EVP-0015962 did not cause the accumulation of other γ-secretase substrates, such as the Notch and ephrin A4 receptors, whereas a γ-secretase inhibitor reduced processing of both. A single oral dose of EVP-0015962 (30 mg/kg) decreased Aß42 and did not alter AßTotal peptide levels in a dose-dependent manner in Tg2576 mouse brain at an age when overt Aß deposition was not present. In Tg2576 mice, chronic treatment with EVP-0015962 (20 or 60 mg/kg/day in a food formulation) reduced Aß aggregates, amyloid plaques, inflammatory markers, and cognitive deficits. CONCLUSIONS: EVP-0015962 is orally bioavailable, detected in brain, and a potent, selective γ-secretase modulator in vitro and in vivo. Chronic treatment with EVP-0015962 was well tolerated in mice and lowered the production of Aß42, attenuated memory deficits, and reduced Aß plaque formation and inflammation in Tg2576 transgenic animals. In summary, these data suggest that γ-secretase modulation with EVP-0015962 represents a viable therapeutic alternative for disease modification in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Secretasas de la Proteína Precursora del Amiloide/efectos de los fármacos , Péptidos beta-Amiloides/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Compuestos de Bifenilo/farmacología , Fenilpropionatos/farmacología , Propionatos/farmacología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Línea Celular Tumoral , Humanos , Ratones , Ratones Transgénicos , Transfección
9.
J Biol Chem ; 279(10): 8642-7, 2004 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-14699119

RESUMEN

NIPP1 is a ubiquitous nuclear protein that is required for spliceosome assembly. We report here that the phosphothreonine-binding Forkhead-associated domain of NIPP1 interacts with the cell cycle-regulated protein Ser/Thr kinase MELK (maternal embryonic leucine zipper kinase). The NIPP1-MELK interaction was critically dependent on the phosphorylaton of Thr-478 of MELK and was increased in lysates from mitotically arrested cells. Recombinant MELK was a potent inhibitor of an early step of spliceosome assembly in nuclear extracts. This splicing defect was also seen with a kinase-dead mutant but was absent after mutation (T478A) of the NIPP1 binding site of MELK, indicating a mediatory role for NIPP1. Our data suggest that MELK has a role in the cell cycle-regulated control of pre-mRNA splicing.


Asunto(s)
Proteínas Portadoras/metabolismo , Endorribonucleasas , Péptidos y Proteínas de Señalización Intracelular , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Unión al ARN , Empalmosomas/fisiología , Animales , Células COS , Ciclo Celular/fisiología , Células HeLa , Humanos , Fosfoproteínas Fosfatasas , Fosforilación , Precursores del ARN/fisiología , Empalme del ARN
10.
J Biol Chem ; 277(49): 47331-7, 2002 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-12226088

RESUMEN

Functional studies of the protein phosphatase-1 (PP1) regulator Sds22 suggest that it is indirectly and/or directly involved in one of the most ancient functions of PP1, i.e. reversing phosphorylation by the Aurora-related protein kinases. We predict that the conserved portion of Sds22 folds into a curved superhelix and demonstrate that mutation to alanine of any of eight residues (Asp(148), Phe(170), Glu(192), Phe(214), Asp(280), Glu(300), Trp(302), or Tyr(327)) at the concave surface of this superhelix thwarts the interaction with PP1. Furthermore, we show that all mammalian isoforms of PP1 have the potential to bind Sds22. Interaction studies with truncated versions of PP1 and with chimeric proteins comprising fragments of PP1 and the yeast PP1-like protein phosphatase Ppz1 suggest that the site(s) required for the binding of Sds22 reside between residues 43 and 173 of PP1gamma(1). Within this region, a major interaction site was mapped to a triangular region delineated by the alpha4-, alpha5-, and alpha6-helices. Our data also show that well known regulatory binding sites of PP1, such as the RVXF-binding channel, the beta12/beta13-loop, and the acidic groove, are not essential for the interaction with Sds22.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Western Blotting , Células COS , Dominio Catalítico , Secuencia Conservada , Bases de Datos como Asunto , Eliminación de Gen , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares , Plásmidos/metabolismo , Pruebas de Precipitina , Unión Proteica , Pliegue de Proteína , Isoformas de Proteínas , Proteína Fosfatasa 1 , Estructura Terciaria de Proteína , Conejos , Ratas , Homología de Secuencia de Aminoácido , Técnicas del Sistema de Dos Híbridos , beta-Galactosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...