Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38260362

RESUMEN

In response to antigens, B cells undergo affinity maturation and class switching mediated by activation-induced cytidine deaminase (AID) in germinal centers (GCs) of secondary lymphoid organs, but uncontrolled AID activity can precipitate autoimmunity and cancer. The regulation of GC antibody diversification is of fundamental importance but not well understood. We found that autoimmune regulator (AIRE), the molecule essential for T cell tolerance, is expressed in GC B cells in a CD40-dependent manner, interacts with AID and negatively regulates antibody affinity maturation and class switching by inhibiting AID function. AIRE deficiency in B cells caused altered antibody repertoire, increased somatic hypermutations, elevated autoantibodies to T helper 17 effector cytokines and defective control of skin Candida albicans. These results define a GC B cell checkpoint of humoral immunity and illuminate new approaches of generating high-affinity neutralizing antibodies for immunotherapy.

2.
Front Immunol ; 14: 1030813, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36865553

RESUMEN

Intoduction: Two scaffold/matrix attachment regions (5'- and 3'-MARsEµ ) flank the intronic core enhancer (cEµ) within the immunoglobulin heavy chain locus (IgH). Besides their conservation in mice and humans, the physiological role of MARsEµ is still unclear and their involvement in somatic hypermutation (SHM) has never been deeply evaluated. Methods: Our study analyzed SHM and its transcriptional control in a mouse model devoid of MARsEµ , further combined to relevant models deficient for base excision repair and mismatch repair. Results: We observed an inverted substitution pattern in of MARsEµ -deficient animals: SHM being decreased upstream from cEµ and increased downstream of it. Strikingly, the SHM defect induced by MARsEµ -deletion was accompanied by an increase of sense transcription of the IgH V region, excluding a direct transcription-coupled effect. Interestingly, by breeding to DNA repair-deficient backgrounds, we showed that the SHM defect, observed upstream from cEµ in this model, was not due to a decrease in AID deamination but rather the consequence of a defect in base excision repair-associated unfaithful repair process. Discussion: Our study pointed out an unexpected "fence" function of MARsEµ regions in limiting the error-prone repair machinery to the variable region of Ig gene loci.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Reparación del ADN , Cadenas Pesadas de Inmunoglobulina , Hipermutación Somática de Inmunoglobulina , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Intrones , Fenotipo , Cadenas Pesadas de Inmunoglobulina/genética
3.
J Immunol ; 210(4): 369-376, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36603026

RESUMEN

Class-switch recombination (CSR) produces secondary Ig isotypes and requires activation-induced cytidine deaminase (AID)-dependent DNA deamination of intronic switch regions within the IgH (Igh) gene locus. Noncanonical repair of deaminated DNA by mismatch repair (MMR) or base excision repair (BER) creates DNA breaks that permit recombination between distal switch regions. Ataxia telangiectasia mutated (ATM)-dependent phosphorylation of AID at serine 38 (pS38-AID) promotes its interaction with apurinic/apyrimidinic endonuclease 1 (APE1), a BER protein, suggesting that ATM regulates CSR through BER. However, pS38-AID may also function in MMR during CSR, although the mechanism remains unknown. To examine whether ATM modulates BER- and/or MMR-dependent CSR, Atm-/- mice were bred to mice deficient for the MMR gene mutS homolog 2 (Msh2). Surprisingly, the predicted Mendelian frequencies of Atm-/-Msh2-/- adult mice were not obtained. To generate ATM and MSH2-deficient B cells, Atm was conditionally deleted on an Msh2-/- background using a floxed ATM allele (Atmf) and B cell-specific Cre recombinase expression (CD23-cre) to produce a deleted ATM allele (AtmD). As compared with AtmD/D and Msh2-/- mice and B cells, AtmD/DMsh2-/- mice and B cells display a reduced CSR phenotype. Interestingly, Sµ-Sγ1 junctions from AtmD/DMsh2-/- B cells that were induced to switch to IgG1 in vitro showed a significant loss of blunt end joins and an increase in insertions as compared with wild-type, AtmD/D, or Msh2-/- B cells. These data indicate that the absence of both ATM and MSH2 blocks nonhomologous end joining, leading to inefficient CSR. We propose a model whereby ATM and MSH2 function cooperatively to regulate end joining during CSR through pS38-AID.


Asunto(s)
Ataxia Telangiectasia , Ratones , Animales , Proteína 2 Homóloga a MutS/genética , Ataxia Telangiectasia/genética , Roturas del ADN de Doble Cadena , Cambio de Clase de Inmunoglobulina/genética , Reparación del ADN , ADN , Citidina Desaminasa/genética , Ratones Noqueados
5.
Front Genet ; 12: 678084, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721515

RESUMEN

B cells play a significant role in the adaptive immune response by secreting immunoglobulins that can recognize and neutralize foreign antigens. They develop from hematopoietic stem cells, which also give rise to other types of blood cells, such as monocytes, neutrophils, and T cells, wherein specific transcriptional programs define the commitment and subsequent development of these different cell lineages. A number of transcription factors, such as PU.1, E2A, Pax5, and FOXO1, drive B cell development. Mounting evidence demonstrates that non-coding RNAs, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), modulate the expression of these transcription factors directly by binding to the mRNA coding for the transcription factor or indirectly by modifying cellular pathways that promote expression of the transcription factor. Conversely, these transcription factors upregulate expression of some miRNAs and lncRNAs to determine cell fate decisions. These studies underscore the complex gene regulatory networks that control B cell development during hematopoiesis and identify new regulatory RNAs that require additional investigation. In this review, we highlight miRNAs and lncRNAs that modulate the expression and activity of transcriptional regulators of B lymphopoiesis and how they mediate this regulation.

6.
Front Immunol ; 12: 703918, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34381455

RESUMEN

B cells produce high-affinity immunoglobulins (Igs), or antibodies, to eliminate foreign pathogens. Mature, naïve B cells expressing an antigen-specific cell surface Ig, or B cell receptor (BCR), are directed toward either an extrafollicular (EF) or germinal center (GC) response upon antigen binding. B cell interactions with CD4+ pre-T follicular helper (pre-Tfh) cells at the T-B border and effector Tfh cells in the B cell follicle and GC control B cell development in response to antigen. Here, we review recent studies demonstrating the role of B cell receptor (BCR) affinity in modulating T-B interactions and the subsequent differentiation of B cells in the EF and GC response. Overall, these studies demonstrate that B cells expressing high affinity BCRs preferentially differentiate into antibody secreting cells (ASCs) while those expressing low affinity BCRs undergo further affinity maturation or differentiate into memory B cells (MBCs).


Asunto(s)
Comunicación Celular/inmunología , Diferenciación Celular/inmunología , Centro Germinal/inmunología , Células B de Memoria/inmunología , Receptores de Antígenos de Linfocitos B/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Humanos
7.
J Vis Exp ; (170)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33970137

RESUMEN

Within the germinal centers of lymphoid organs, mature B cells alter their expressed immunoglobulin (Ig) by introducing untemplated mutations into the variable coding exons of the Ig heavy and light chain gene loci. This process of somatic hypermutation (SHM) requires the enzyme activation-induced cytidine deaminase (AID), which converts deoxycytidines (C), into deoxyuridines (U). Processing the AID-generated U:G mismatches into mutations by the base excision and mismatch repair pathways introduces new Ig coding sequences that may produce a higher affinity Ig. Mutations in AID or DNA repair genes can block or significantly alter the types of mutations observed in the Ig loci. We describe a protocol to quantify JH4 intron mutations that uses fluorescence activated cell sorting (FACS), PCR, and Sanger sequencing. Although this assay does not directly measure Ig affinity maturation, it is indicative of mutations in Ig variable coding sequences. Additionally, these methods utilize common molecular biology techniques which analyze mutations in Ig sequences of multiple B cell clones. Thus, this assay is an invaluable tool in the study of SHM and Ig diversification.


Asunto(s)
Linfocitos B/metabolismo , Centro Germinal/metabolismo , Intrones/genética , Ganglios Linfáticos Agregados/fisiopatología , Hipermutación Somática de Inmunoglobulina/genética , Animales , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Humanos , Ratones
8.
J Biol Chem ; 296: 100625, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33831416

RESUMEN

Class switch recombination (CSR) is the process by which B cells switch production from IgM/IgD to other immunoglobulin isotypes, enabling them to mount an effective immune response against pathogens. Timely resolution of CSR prevents damage due to an uncontrolled and prolonged immune response. While many positive regulators of CSR have been described, negative regulators of CSR are relatively unknown. Using an shRNA library screen targeting more than 28,000 genes in a mouse B cell line, we have identified a novel, uncharacterized protein of 82kD (KIAA1841, NM_027860), which we have named SANBR (SANT and BTB domain regulator of CSR), as a negative regulator of CSR. The purified, recombinant BTB domain of SANBR exhibited characteristic properties such as homodimerization and interaction with corepressor proteins, including HDAC and SMRT. Overexpression of SANBR inhibited CSR in primary mouse splenic B cells, and inhibition of CSR is dependent on the BTB domain while the SANT domain is largely dispensable. Thus, we have identified a new member of the BTB family that serves as a negative regulator of CSR. Future investigations to identify transcriptional targets of SANBR in B cells will reveal further insights into the specific mechanisms by which SANBR regulates CSR as well as fundamental gene regulatory activities of this protein.


Asunto(s)
Dominio BTB-POZ , Proteínas de Unión al ADN/metabolismo , Cambio de Clase de Inmunoglobulina , Linfoma de Células B/patología , Recombinación Genética , Secuencia de Aminoácidos , Animales , Linfocitos B/metabolismo , Linfocitos B/patología , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Femenino , Humanos , Linfoma de Células B/genética , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Interferente Pequeño/genética , Homología de Secuencia
9.
J Immunol ; 204(1): 13-22, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31757865

RESUMEN

Activation-induced cytidine deaminase (AID) generates U:G mismatches in Ig genes that can be converted into untemplated mutations during somatic hypermutation or DNA double-strand breaks during class switch recombination (CSR). Null mutations in UNG and MSH2 demonstrate the complementary roles of the base excision repair (BER) and mismatch repair pathways, respectively, in CSR. Phosphorylation of AID at serine 38 was previously hypothesized to regulate BER during CSR, as the AID phosphorylation mutant, AID(S38A), cannot interact with APE1, a BER protein. Consistent with these findings, we observe a complete block in CSR in AIDS38A/S38AMSH2-/- mouse B cells that correlates with an impaired mutation frequency at 5'Sµ. Similarly, somatic hypermutation is almost negligible at the JH4 intron in AIDS38A/S38AMSH2-/- mouse B cells, and, consistent with this, NP-specific affinity maturation in AIDS38A/S38AMSH2-/- mice is not significantly elevated in response to NP-CGG immunization. Surprisingly, AIDS38A/S38AUNG-/- mouse B cells also cannot complete CSR or affinity maturation despite accumulating significant mutations in 5'Sµ as well as the JH4 intron. These data identify a novel role for phosphorylation of AID at serine 38 in mismatch repair-dependent CSR and affinity maturation.


Asunto(s)
Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Reparación de la Incompatibilidad de ADN/genética , Cambio de Clase de Inmunoglobulina/genética , Hipermutación Somática de Inmunoglobulina/genética , Animales , Linfocitos B/citología , Linfocitos B/inmunología , Roturas del ADN de Doble Cadena , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Femenino , Genes de Inmunoglobulinas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína 2 Homóloga a MutS/genética , Fosforilación , Recombinación Genética , Uracil-ADN Glicosidasa/genética
10.
J Immunol ; 202(11): 3137-3142, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31028119

RESUMEN

The DNA damage response protein ATM has long been known to influence class switch recombination in ex vivo-cultured B cells. However, an assessment of B cell-intrinsic requirement of ATM in humoral responses in vivo was confounded by the fact that its germline deletion affects T cell function, and B:T cell interactions are critical for in vivo immune responses. In this study, we demonstrate that B cell-specific deletion of ATM in mice leads to reduction in germinal center (GC) frequency and size in response to immunization. We find that loss of ATM induces apoptosis of GC B cells, likely due to unresolved DNA lesions in cells attempting to undergo class-switch recombination. Accordingly, suboptimal GC responses in ATM-deficient animals are characterized by decreased titers of class-switched Abs and decreased rates of somatic hypermutation. These results unmask the critical B cell-intrinsic role of ATM in maintaining an optimal GC response following immunization.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Linfocitos B/fisiología , Centro Germinal/fisiología , Linfocitos T/fisiología , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Células Cultivadas , Reparación del ADN/genética , Cambio de Clase de Inmunoglobulina , Ratones , Ratones Noqueados , Receptores de Complemento 3d/genética , Hipermutación Somática de Inmunoglobulina
11.
FEBS Lett ; 593(1): 80-87, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30411342

RESUMEN

Class switch recombination (CSR) in B cells involves deletion-recombination at switch (S) region DNA and is important for the diversification of antibody isotypes during an immune response. Here, we identify two NME [NM23/NDPK (nucleoside diphosphate kinase)] isoforms, NME1 and NME2, as novel players in this process. Knockdown of NME2 leads to decreased CSR, while knockdown of the highly homologous NME1 results in increased CSR. Interestingly, these NME proteins also display differential occupancy at S regions during CSR despite their homology; NME1 binds to S regions prior to stimulation, while NME2 binds to S regions only after stimulation. To the best of our knowledge, this represents the first report of a role for these proteins in the regulation of CSR.


Asunto(s)
Linfocitos B/metabolismo , Cadenas Pesadas de Inmunoglobulina/química , Nucleósido Difosfato Quinasas NM23/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Técnicas de Silenciamiento del Gen , Cambio de Clase de Inmunoglobulina , Cadenas Pesadas de Inmunoglobulina/metabolismo , Región de Cambio de la Inmunoglobulina , Ratones , Nucleósido Difosfato Quinasas NM23/genética , Unión Proteica
12.
Cell ; 161(4): 762-73, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25957684

RESUMEN

Transcription through immunoglobulin switch (S) regions is essential for class switch recombination (CSR), but no molecular function of the transcripts has been described. Likewise, recruitment of activation-induced cytidine deaminase (AID) to S regions is critical for CSR; however, the underlying mechanism has not been fully elucidated. Here, we demonstrate that intronic switch RNA acts in trans to target AID to S region DNA. AID binds directly to switch RNA through G-quadruplexes formed by the RNA molecules. Disruption of this interaction by mutation of a key residue in the putative RNA-binding domain of AID impairs recruitment of AID to S region DNA, thereby abolishing CSR. Additionally, inhibition of RNA lariat processing leads to loss of AID localization to S regions and compromises CSR; both defects can be rescued by exogenous expression of switch transcripts in a sequence-specific manner. These studies uncover an RNA-mediated mechanism of targeting AID to DNA.


Asunto(s)
Citidina Desaminasa/metabolismo , Cambio de Clase de Inmunoglobulina , ARN Guía de Kinetoplastida/metabolismo , Animales , G-Cuádruplex , Intrones , Proteínas de Unión a Maltosa/metabolismo , Ratones , Procesamiento Postranscripcional del ARN , ARN Guía de Kinetoplastida/genética
13.
PLoS Genet ; 9(11): e1003945, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24244200

RESUMEN

ATP-dependent chromatin remodelers control DNA access for transcription, recombination, and other processes. Acf1 (also known as BAZ1A in mammals) is a defining subunit of the conserved ISWI-family chromatin remodelers ACF and CHRAC, first purified over 15 years ago from Drosophila melanogaster embryos. Much is known about biochemical properties of ACF and CHRAC, which move nucleosomes in vitro and in vivo to establish ordered chromatin arrays. Genetic studies in yeast, flies and cultured human cells clearly implicate these complexes in transcriptional repression via control of chromatin structures. RNAi experiments in transformed mammalian cells in culture also implicate ACF and CHRAC in DNA damage checkpoints and double-strand break repair. However, their essential in vivo roles in mammals are unknown. Here, we show that Baz1a-knockout mice are viable and able to repair developmentally programmed DNA double-strand breaks in the immune system and germ line, I-SceI endonuclease-induced breaks in primary fibroblasts via homologous recombination, and DNA damage from mitomycin C exposure in vivo. However, Baz1a deficiency causes male-specific sterility in accord with its high expression in male germ cells, where it displays dynamic, stage-specific patterns of chromosomal localization. Sterility is caused by pronounced defects in sperm development, most likely a consequence of massively perturbed gene expression in spermatocytes and round spermatids in the absence of BAZ1A: the normal spermiogenic transcription program is largely intact but more than 900 other genes are mis-regulated, primarily reflecting inappropriate up-regulation. We propose that large-scale changes in chromatin composition that occur during spermatogenesis create a window of vulnerability to promiscuous transcription changes, with an essential function of ACF and/or CHRAC chromatin remodeling activities being to safeguard against these alterations.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Roturas del ADN de Doble Cadena , Espermatogénesis/genética , Factores de Transcripción/genética , Adenosina Trifosfato/metabolismo , Animales , Cromatina/metabolismo , Reparación del ADN/genética , Drosophila/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Infertilidad Masculina/genética , Masculino , Ratones , Ratones Noqueados , Nucleosomas/metabolismo , Cultivo Primario de Células , Factores de Transcripción/biosíntesis
14.
Nat Immunol ; 14(11): 1183-1189, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24097111

RESUMEN

The ability of activation-induced cytidine deaminase (AID) to efficiently mediate class-switch recombination (CSR) is dependent on its phosphorylation at Ser38; however, the trigger that induces AID phosphorylation and the mechanism by which phosphorylated AID drives CSR have not been elucidated. Here we found that phosphorylation of AID at Ser38 was induced by DNA breaks. Conversely, in the absence of AID phosphorylation, DNA breaks were not efficiently generated at switch (S) regions in the immunoglobulin heavy-chain locus (Igh), consistent with a failure of AID to interact with the endonuclease APE1. Additionally, deficiency in the DNA-damage sensor ATM impaired the phosphorylation of AID at Ser38 and the interaction of AID with APE1. Our results identify a positive feedback loop for the amplification of DNA breaks at S regions through the phosphorylation- and ATM-dependent interaction of AID with APE1.


Asunto(s)
Linfocitos B/inmunología , Citidina Desaminasa/inmunología , ADN-(Sitio Apurínico o Apirimidínico) Liasa/inmunología , Retroalimentación Fisiológica , Cambio de Clase de Inmunoglobulina , Cadenas Pesadas de Inmunoglobulina/inmunología , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/inmunología , Linfocitos B/citología , Citidina Desaminasa/genética , Roturas del ADN de Doble Cadena , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Regulación de la Expresión Génica , Cadenas Pesadas de Inmunoglobulina/genética , Ratones , Fosforilación , Unión Proteica , Serina/inmunología , Serina/metabolismo , Transducción de Señal
15.
Semin Immunol ; 24(4): 264-72, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22771392

RESUMEN

Protective humoral immune responses result from immunoglobulin (Ig) diversification reactions that proceed through programmed DNA double-strand breaks and mutations in developing or mature B cells. While primary Ig diversity is dependent on V(D)J recombination and the RAG proteins, secondary diversification is achieved through class switch recombination (CSR) and somatic hypermutation (SHM), which require AID (activation induced deaminase). Because aberrant AID activity can result in mutations in non-Ig loci and DNA translocations between the Ig locus and non-Ig genes, the activity of AID must be stringently regulated. AID mRNA expression is regulated transcriptionally by cytokine stimulation and post-transcriptionally by miRNAs. AID activity is regulated by post-translational modifications, subcellular localization, and interaction with other proteins. All of these molecular mechanisms have evolved to specifically induce AID-dependent mutations and DNA double-strand breaks at the Ig loci to promote maximal Ig gene diversification while limiting the access of this mutator to non-Ig regions.


Asunto(s)
Citidina Desaminasa/inmunología , ADN/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Desaminación , Regulación Enzimológica de la Expresión Génica , Humanos , Unión Proteica
16.
Nat Immunol ; 10(4): 420-6, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19234474

RESUMEN

Immunoglobulin class-switch recombination (CSR) requires activation-induced cytidine deaminase (AID). Deamination of DNA by AID in transcribed switch (S) regions leads to double-stranded breaks in DNA that serve as obligatory CSR intermediates. Here we demonstrate that the catalytic and regulatory subunits of protein kinase A (PKA) were specifically recruited to S regions to promote the localized phosphorylation of AID, which led to binding of replication protein A and subsequent propagation of the CSR cascade. Accordingly, inactivation of PKA resulted in considerable disruption of CSR because of decreased AID phosphorylation and recruitment of replication protein A to S regions. We propose that PKA nucleates the formation of active AID complexes specifically on S regions to generate the high density of DNA lesions required for CSR.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/inmunología , Citidina Desaminasa/inmunología , Cambio de Clase de Inmunoglobulina , Recombinación Genética/inmunología , Proteína de Replicación A/inmunología , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Roturas del ADN de Doble Cadena , Ratones , Ratones Mutantes , Fosforilación , Unión Proteica , Infecciones por Retroviridae/inmunología
17.
Proc Natl Acad Sci U S A ; 106(8): 2717-22, 2009 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-19196992

RESUMEN

Activation-induced cytidine deaminase (AID) is a single-stranded (ss) DNA-specific cytidine deaminase that initiates Ig heavy chain (IgH) class switch recombination (CSR) and Ig somatic hypermutation (SHM) by deaminating cytidines within, respectively, IgH switch (S) regions and Ig variable region (V) exons. AID that is phosphorylated on serine residue 38 interacts with replication protein A (RPA), a ssDNA binding protein, to promote deamination of transcribed double-stranded DNA in vitro, which, along with other evidence, suggests that AID may similarly gain access to transcribed S regions and V exons in vivo. However, the physiological role of AID phosphorylation at serine residue 38 (S38), and even the requirement for the S38 residue, with respect to CSR or SHM has been debated. To address this issue, we used gene targeting to generate an endogenous mouse AID locus that produces AID in which S38 is substituted with alanine (AID(S38A)), a mutant form of AID that retains similar catalytic activity on ssDNA as WT AID (AID(WT)). B cells homozygous for the AID(S38A) mutation show substantially impaired CSR and SHM, correlating with inability of AID(S38A) to interact with endogenous RPA. Moreover, mice haploinsufficient for AID(S38A) have even more severely impaired CSR when compared with mice haploinsufficient for AID(WT), with CSR levels reduced to nearly background levels. These results unequivocally demonstrate that integrity of the AID S38 phosphorylation site is required for normal CSR and SHM in mice and strongly support a role for AID phosphorylation at S38 and RPA interaction in regulating CSR and SHM.


Asunto(s)
Citidina Desaminasa/metabolismo , Cambio de Clase de Inmunoglobulina , Mutación , Recombinación Genética , Serina/metabolismo , Animales , Secuencia de Bases , Citidina Desaminasa/química , Cartilla de ADN , Exones , Técnicas de Sustitución del Gen , Inmunoprecipitación , Ratones , Ratones Mutantes , Ganglios Linfáticos Agregados/enzimología , Fosforilación , Reacción en Cadena de la Polimerasa
18.
Mol Cell Biol ; 24(20): 9092-101, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15456882

RESUMEN

The regulation of cytokine signaling is critical for controlling cellular proliferation and activation during an immune response. SOCS-1 is a potent inhibitor of Jak kinase activity and of signaling initiated by several cytokines. SOCS-1 protein levels are tightly regulated, and recent data suggest that SOCS-1 may regulate the protein levels of some signaling proteins by the ubiquitin proteasome pathway; however, the cellular mechanism by which SOCS-1 directs proteins for degradation is unknown. In this report, SOCS-1 is found to colocalize and biochemically copurify with the microtubule organizing complex (MTOC) and its associated 20S proteasome. The SOCS-1 SH2 domain is required for the localization of SOCS-1 to the MTOC. Overexpression of SOCS-1 targets Jak1 in an SH2-dependent manner to a perinuclear distribution resembling the MTOC-associated 20S proteasome. Analysis of MTOCs fractionated from SOCS-1-deficient cells demonstrates that SOCS-1 may function redundantly to regulate the localization of Jak1 to the MTOC. Nocodazole inhibits the protein turnover of SOCS-1, demonstrating that the minus-end transport of SOCS-1 to the MTOC-associated 20S proteasome is required to regulate SOCS-1 protein levels. These data link SOCS-1 directly with the proteasome pathway and suggest another function for the SH2 domain of SOCS-1 in the regulation of Jak/STAT signaling.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Represoras/metabolismo , Animales , Fraccionamiento Celular , Línea Celular , Centrosoma/química , Centrosoma/metabolismo , Chlorocebus aethiops , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Janus Quinasa 1 , Microtúbulos/metabolismo , Estructura Terciaria de Proteína , Proteínas Tirosina Quinasas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Fracciones Subcelulares/metabolismo , Proteína 1 Supresora de la Señalización de Citocinas , Proteínas Supresoras de la Señalización de Citocinas
19.
J Biol Chem ; 278(7): 4800-5, 2003 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-12473674

RESUMEN

The pim family of proto-oncogenes encodes three serine-threonine kinases that have been implicated in the development of malignancies in mice and in humans. Expression of the Pim protein kinases is tightly regulated at the transcriptional, post-transcriptional, and translational levels. Dysregulation of pim transcription and pim mRNA stability have been implicated in Pim-mediated transformation. The data presented herein demonstrate that expression of the Pim kinases is additionally regulated at the post-translational level, by the serine-threonine phosphatase protein phosphatase 2A (PP2A). The catalytic subunit of PP2A associates with the Pim kinases in vivo, and the Pim kinases are substrates of PP2A phosphatase activity in vitro. Furthermore, overexpression of PP2A reduces the levels of the Pim proteins, whereas inhibition of PP2A activity by the protein phosphatase inhibitor okadaic acid stabilizes the Pim proteins. Finally, the effects of PP2A on the expression of the Pim proteins can affect Pim function. Taken together, these data suggest that PP2A activity is important for the regulation of the stability and function of the Pim kinases.


Asunto(s)
Fosfoproteínas Fosfatasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Dominio Catalítico/fisiología , Línea Celular , Estabilidad de Enzimas , Humanos , Proteína Fosfatasa 2 , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-pim-1
20.
J Biol Chem ; 277(38): 34870-8, 2002 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-12107171

RESUMEN

The c-Abl tyrosine kinase is activated by some forms of DNA damage, including ionizing radiation, but not UV radiation. The functions of this activation in the damage response pathways remain obscure. To identify potential targets of c-Abl kinase, we utilized the yeast two-hybrid system to screen a murine cDNA library. One c-Abl binding protein of particular interest was the large subunit (DDB1) of the heterodimeric complex with UV-damaged DNA binding activity (UV-DDB). This complex binds with high specificity to DNA damaged by UV, is absent in a subset of xeroderma pigmentosum group E cells, and is required for global genomic repair of UV-induced damage. The association of c-Abl with DDB1 required the kinase domain of c-Abl and preserved the interaction between DDB1 and the small subunit (DDB2) of the UV-DDB complex. Significantly, overexpression of c-Abl increased tyrosine phosphorylation of DDB2 and suppressed UV-DDB activity. Conversely, a dominant negative, kinase-deficient allele of c-Abl decreased tyrosine phosphorylation of DDB2 and dramatically stimulated UV-DDB activity. These results suggest that one role of c-Abl may be to negatively regulate UV-DDB activity by phosphorylation of DDB2.


Asunto(s)
Daño del ADN , Proteínas de Unión al ADN/metabolismo , ADN/efectos de la radiación , Proteínas Proto-Oncogénicas c-abl/metabolismo , Rayos Ultravioleta , Línea Celular , Humanos , Fosforilación , Unión Proteica , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...