Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; 1(4): 502-12, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23184784

RESUMEN

Magnetic particles are very efficient magnetic resonance imaging (MRI) contrast agents. In recent years, chemists have unleashed their imagination to design multi-functional nanoprobes for biomedical applications including MRI contrast enhancement. This study is focused on the direct relationship between the size and magnetization of the particles and their nuclear magnetic resonance relaxation properties, which condition their efficiency. Experimental relaxation results with maghemite particles exhibiting a wide range of sizes and magnetizations are compared to previously published data and to well-established relaxation theories with a good agreement. This allows deriving the experimental master curve of the transverse relaxivity versus particle size and to predict the MRI contrast efficiency of any type of magnetic nanoparticles. This prediction only requires the knowledge of the size of the particles impermeable to water protons and the saturation magnetization of the corresponding volume. To predict the T(2) relaxation efficiency of magnetic single crystals, the crystal size and magnetization - obtained through a single Langevin fit of a magnetization curve - is the only information needed. For contrast agents made of several magnetic cores assembled into various geometries (dilute fractal aggregates, dense spherical clusters, core-shell micelles, hollow vesicles…), one needs to know a third parameter, namely the intra-aggregate volume fraction occupied by the magnetic materials relatively to the whole (hydrodynamic) sphere. Finally a calculation of the maximum achievable relaxation effect - and the size needed to reach this maximum - is performed for different cases: maghemite single crystals and dense clusters, core-shell particles (oxide layer around a metallic core) and zinc-manganese ferrite crystals.


Asunto(s)
Algoritmos , Medios de Contraste/química , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Nanopartículas de Magnetita , Modelos Químicos , Simulación por Computador , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
2.
Contrast Media Mol Imaging ; 5(6): 318-22, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21190269

RESUMEN

Maghemite particles are used as T2 contrast agents for magnetic resonance imaging, especially for molecular and cellular imaging. Linear clusters of particles - called nanoworms - were recently developed to enhance the targeting efficiency. In this work, the magnetic and NMR relaxation properties of these nanoworms are studied at multiple magnetic fields. After the usual saturation at 0.5 T, the magnetization of the worms is still increasing, which results in an appreciable increase of the transverse relaxivity at high magnetic fields. The obtained relaxivities are typical of superparamagnetic particles of iron oxide (SPIOs). The transverse relaxation of the worms is clearly more efficient than for the isolated grains, which is confirmed by computer simulations. At high field, the longitudinal relaxation of the worms is less pronounced than for the grains, as expected for SPIOs. The nanoworms thus constitute a promising T2 agent for cellular and molecular imaging.


Asunto(s)
Medios de Contraste/química , Aumento de la Imagen/métodos , Imagen por Resonancia Magnética/métodos , Nanopartículas de Magnetita/química , Dextranos , Compuestos Férricos , Espectroscopía de Resonancia Magnética , Magnetismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-20049798

RESUMEN

Nanometric crystals of maghemite are known to exhibit superparamagnetism. Because of the significance of their magnetic moment, maghemite nanoparticles are exceptional contrast agents and are used for magnetic resonance imaging (of the liver, spleen, lymph nodes), for magnetic resonance angiography and for molecular and cellular imaging. The relaxivity of these agents depends on their size, saturation magnetization and magnetic field and also on their degree of clustering. There are different types of maghemite particles whose relaxation characteristics are suited to a specific MRI application. The relaxation induced by maghemite particles is caused by the diffusion of water protons in the inhomogeneous field surrounding the particles. This is well described by a theoretical model that takes magnetite crystal anisotropy and Néel relaxation into account. Another type of superparamagnetic compound is ferritin, the iron-storing protein: it contains a superparamagnetic ferrihydrite core. Even if the resulting magnetic moment of ferritin is far smaller than for magnetite nanoparticles, its massive presence in different organs darkens T(2)-weighted MR images, allowing the noninvasive estimation of iron content, thanks to MRI. The relaxation induced by ferritin in aqueous solutions has been demonstrated to be caused by the exchange of protons between bulk water protons and the surface of the ferrihydrite crystal. However, in vivo, the relaxation properties of ferritin are still unexplained, probably because of protein clustering.


Asunto(s)
Medios de Contraste/química , Compuestos Férricos/química , Aumento de la Imagen/métodos , Imagen por Resonancia Magnética/métodos , Nanopartículas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...