Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pest Manag Sci ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483148

RESUMEN

BACKGROUND: Barnyardgrass (Weed Science Society of America recommended) or Barnyard grass (Britannica recommended) (Echinochloa crus-galli (L.) P. Beauv.) is one of the most problematic and dominant weeds in world agricultural systems, especially in paddy fields, where tillering and grain yield can be reduced by 50-70% because of its competitive pressure. The frequent use of chemical herbicides to control E. crus-galli has led to the evolution of herbicide resistance. Developing bioherbicides using pathogenic fungi to control E. crus-galli could be an alternative option. RESULTS: In a previous study we showed that a strain of Bipolaris yamadae (HXDC-1-2) was promising in controlling gramineous weeds. Here we present a study that evaluated this fungus as a mycoherbicide against E. crus-galli in greenhouse and paddy fields, characterized mycelium growth and conidial production, and examined the infection development. The median effective dose (ED50) and 90% effective dose (ED90) values of microcapsulated B. yamadae strain HXDC-1-2 on E. crus-galli in the greenhouse were 7.17 × 102 and 9.35 × 103 conidia mL-1, respectively. Conidial germination, mycelial growth, and attachment formation occurred on E. crus-galli leaves within 1 to 6 h. The hyphae directly invaded cells and stomata, primarily from the appressorium on the epidermis, and necrotic lesions were observed on the leaf surface within 20 to 24 h. Applied to E. crus-galli plants at 1 × 105 conidia mL-1, the fungus reduced the weed's fresh weight of 75%. CONCLUSION: B. yamadae strain HXDC-1-2 has the potential to be developed as a bioherbicide against E. crus-galli plants, especially in rice fields. © 2024 Society of Chemical Industry.

2.
Pest Manag Sci ; 80(1): 10-18, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36641632

RESUMEN

Root parasitic weeds of the genera Orobanche and Phelipanche (commonly named broomrapes) are responsible for enormous yield losses of several crops all around the world. Traditional weed management methods, including among others the use of herbicides, soil fumigation and solarization, and mechanical, agronomic or physical methods, may have limits of use or can provide a modicum of control. Difficulties in controlling parasitic weeds are due to both the enormous number of seeds produced by each plant that can remain viable for many years, even in the absence of a host, and to the unique physiological and biological properties of the parasite. Although long considered a suitable and promising approach, biological control, in particular the use of microbial organisms or compounds stimulating or inhibiting seed germination, has had no commercial success and no products have reached the market. This article provides a quick overview of the bioherbicide approaches attempted until now, briefly discussing the causes of the failures and the possibility to improve biocontrol agents' effectiveness. Indeed, despite the failures, the 'bioherbicide' approach deserves renewed interest in light of the enormous scientific and technological progress made in past years, which offers new chances of success. © 2023 The Author. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Orobanche , Parásitos , Animales , Orobanche/fisiología , Raíces de Plantas/química , Malezas/fisiología , Semillas , Germinación
5.
Int J Mol Sci ; 24(10)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37239812

RESUMEN

Radicinin is a phytotoxic dihydropyranopyran-4,5-dione isolated from the culture filtrates of Cochliobolus australiensis, a phytopathogenic fungus of the invasive weed buffelgrass (Cenchrus ciliaris). Radicinin proved to have interesting potential as a natural herbicide. Being interested in elucidating the mechanism of action and considering radicinin is produced in small quantities by C. australiensis, we opted to use (±)-3-deoxyradicinin, a synthetic analogue of radicinin that is available in larger quantities and shows radicinin-like phytotoxic activities. To obtain information about subcellular targets and mechanism(s) of action of the toxin, the study was carried out by using tomato (Solanum lycopersicum L.), which, apart from its economic relevance, has become a model plant species for physiological and molecular studies. Results of biochemical assays showed that (±)-3-deoxyradicinin administration to leaves induced chlorosis, ion leakage, hydrogen peroxide production, and membrane lipid peroxidation. Remarkably, the compound determined the uncontrolled opening of stomata, which, in turn, resulted in plant wilting. Confocal microscopy analysis of protoplasts treated with (±)-3-deoxyradicinin ascertained that the toxin targeted chloroplasts, eliciting an overproduction of reactive singlet oxygen species. This oxidative stress status was related by qRT-PCR experiments to the activation of transcription of genes of a chloroplast-specific pathway of programmed cell death.


Asunto(s)
Cenchrus , Solanum lycopersicum , Toxinas Biológicas , Hongos , Cloroplastos , Especies Reactivas de Oxígeno , Estrés Oxidativo
6.
Plants (Basel) ; 11(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36559555

RESUMEN

Major threats to the human lifespan include cancer, infectious diseases, diabetes, mental degenerative conditions and also reduced agricultural productivity due to climate changes, together with new and more devastating plant diseases. From all of this, the need arises to find new biopesticides and new medicines. Plants and microorganisms are the most important sources for isolating new metabolites. Lampedusa Island host a rich contingent of endemic species and subspecies. Seven plant species spontaneously growing in Lampedusa, i.e., Atriplex halimus L. (Ap), Daucus lopadusanus Tineo (Dl), Echinops spinosus Fiori (Es) Glaucium flavum Crantz (Gf) Hypericum aegypticum L: (Ha), Periploca angustifolia Labill (Pa), and Prasium majus L. (Pm) were collected, assessed for their metabolite content, and evaluated for potential applications in agriculture and medicine. The HPLC-MS analysis of n-hexane (HE) and CH2Cl2 (MC) extracts and the residual aqueous phases (WR) showed the presence of several metabolites in both organic extracts. Crude HE and MC extracts from Dl and He significantly inhibited butyrylcholinesterase, as did WR from the extraction of Dl and Pa. HE and MC extracts showed a significant toxicity towards hepatocarcinoma Huh7, while Dl, Ha and Er HE extracts were the most potently cytotoxic to ileocecal colorectal adenocarcinoma HCT-8 cell lines. Most extracts showed antiviral activity. At the lowest concentration tested (1.56 µg/mL), Dl, Gf and Ap MC extracts inhibited betacoronavirus HCoV-OC43 infection by> 2 fold, while the n-hexane extract of Pm was the most potent. In addition, at 1.56 µg/mL, potent inhibition (>10 fold) of dengue virus was detected for Dl, Er, and Pm HE extracts, while Pa and Ap MC extracts dampened infections to undetectable levels. Regarding to phytotoxicity, MC extracts from Er, Ap and Pm were more effective in inhibiting tomato rootlet elongation; the same first two extracts also inhibited seed cress germination while its radicle elongation, due to high sensitivity, was affected by all the extracts. Es and Gf MC extracts also inhibited seed germination of Phelipanche ramosa. Thus, we have uncovered that many of these Lampedusa plants displayed promising biopesticide, antiviral, and biological properties.

7.
Biomolecules ; 12(9)2022 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-36139113

RESUMEN

Araujia hortorum is a perennial vining plant species native to South America. It was introduced into many countries for ornamental and medicinal purposes as well as for its edible fruits, but it has become highly invasive, generating severe environmental problems. Biological control using bioherbicides and natural compounds is an interesting control option. The pathogenic fungus Ascochyta araujiae, isolated from infected leaves of A. hortorum, could be considered as a potential biocontrol agent. Its ability to produce bioactive metabolites was studied. The organic extract of the fungal culture filtrates showed interesting phytotoxic activities consisting of clearly visible necrotic symptoms (0.5-1 cm in diameter) in the punctured leaves. Thus, it was purified; this afforded three main metabolites. These were chemically and biologically characterised: one proved to be a new pentasubstituted dihydrofuro[3,2-b]furan-2(5H)-one, named araufuranone (1). The others were the already known fungal metabolites neovasinin and 2,4-dihydroxy-6-hydoxymethylbenzaldehyde (2 and 3). The structure of araufuranone was determined using spectroscopic methods (essentially 1D and 2D 1H and 13C NMR and HR ESIMS spectra); its relative configuration was assigned by a NOESY spectrum. To the best of our knowledge, araufuranone is the first example of a naturally occurring compound showing that carbon skeleton. Assayed by a puncture, araufuranone proved to be weakly active on the leaves of Diplotaxis sp. and Sonchus sp.; the other two metabolites were even less toxic. Tested on cress, compounds 2 and 3 were able to partially inhibit rootlet elongation whereas araufuranone was almost inactive.


Asunto(s)
Ascomicetos , Toxinas Biológicas , Ascomicetos/química , Carbono/metabolismo , Furanos , Estructura Molecular , Hojas de la Planta/química , Toxinas Biológicas/metabolismo
8.
Toxins (Basel) ; 14(7)2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35878212

RESUMEN

Cyclopaldic acid is one of the main phytotoxic metabolites produced by fungal pathogens of the genus Seiridium, causal agents, among others, of the canker disease of plants of the Cupressaceae family. Previous studies showed that the metabolite can partially reproduce the symptoms of the infection and that it is toxic to different plant species, thereby proving to be a non-specific phytotoxin. Despite the remarkable biological effects of the compound, which revealed also insecticidal, fungicidal and herbicidal properties, information about its mode of action is still lacking. In this study, we investigated the effects of cyclopaldic acid in Arabidopsis thaliana plants and protoplasts, in order to get information about subcellular targets and mechanism of action. Results of biochemical assays showed that cyclopaldic acid induced leaf chlorosis, ion leakage, membrane-lipid peroxidation, hydrogen peroxide production, inhibited root proton extrusion in vivo and plasma membrane H+-ATPase activity in vitro. qRT-PCR experiments demonstrated that the toxin elicited the transcription of key regulators of the immune response to necrotrophic fungi, of hormone biosynthesis, as well as of genes involved in senescence and programmed cell death. Confocal microscopy analysis of protoplasts allowed to address the question of subcellular targets of the toxin. Cyclopaldic acid targeted the plasma membrane H+-ATPase, inducing depolarization of the transmembrane potential, mitochondria, disrupting the mitochondrial network and eliciting overproduction of reactive oxygen species, and vacuole, determining tonoplast disgregation and induction of vacuole-mediated programmed cell death and autophagy.


Asunto(s)
Arabidopsis , Apoptosis , Arabidopsis/genética , Ascomicetos , Autofagia , Benzofuranos , ATPasas de Translocación de Protón/metabolismo , ATPasas de Translocación de Protón/farmacología
9.
Biomolecules ; 12(2)2022 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-35204800

RESUMEN

Allelochemicals are considered an environment-friendly and promising alternative for weed management, although much effort is still needed for understanding their mode of action and then promoting their use in plant allelopathy management practices. Here, we report that Inuloxin A (InA), an allelochemical isolated from Dittrichia viscosa, inhibited root elongation and growth of seedlings of Lycopersicon esculentum and Lepidium sativum at the highest concentrations tested. InA-induced antioxidant responses in the seedlings were investigated by analysing the contents of glutathione (GSH) and ascorbate (ASC), and their oxidized forms, dehydroascorbate (DHA), and glutathione disulphide (GSSG), as well as the redox state of thiol-containing proteins. An increase in ASC, DHA, and GSH levels at high concentrations of InA, after 3 and 6 days, were observed. Moreover, the ASC/DHA + ASC and GSH/GSSG + GSH ratios showed a shift towards the oxidized form. Our study provides the first insight into how the cell redox system responds and adapts to InA phytotoxicity, providing a framework for further molecular studies.


Asunto(s)
Plantones , Solanum lycopersicum , Ácido Ascórbico/metabolismo , Ácido Ascórbico/farmacología , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Lepidium sativum/metabolismo , Solanum lycopersicum/metabolismo , Oxidación-Reducción , Plantones/metabolismo , Sesquiterpenos
10.
Nat Prod Res ; 36(5): 1253-1259, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33445969

RESUMEN

Since 1987, several cytochalasins were isolated from Phoma exigua var. heteromorpha, the causal agent of foliar blight disease of oleander (Nerium oleander L.), and chemically and biologically characterised. During the purification process of a large-scale production of cytochalasins A and B, necessary to continue the study on their anticancer activity, a metabolite having a different carbon skeleton compared to that of cytochalasans, was isolated. It was identified as terpestacin, a well-known toxic fungal stestertepenoid, isolated for the first time from P. exigua var. heteromorpha, by spectroscopic investigation (essentially 1D and 2D 1H and 13C-NMR and ESI MS) and optical methods in comparison with the literature data. Terpestacin and some its derivatives (including a natural one, fusaproliferin) were prepared and tested for their biological activity. Terpestacin and fusaproliferin had some inhibitory effects on seed germination of Phelipanche ramosa, whereas none of the compounds caused phytotoxic effects on weed leaves.[Formula: see text].


Asunto(s)
Ascomicetos , Nerium , Compuestos Bicíclicos con Puentes , Nerium/química , Hojas de la Planta/química
11.
Nat Prod Res ; 36(5): 1143-1150, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33342291

RESUMEN

Ophiobolin A is a secondary phytotoxic metabolite produced by some pathogenic fungal species responsible for severe plant diseases, considered to play a role in disease development and symptom appearance. Herein we investigated whether the phytotoxic activities of ophiobolin A against weed species could be improved by nanoencapsulation. Given the rapid natural degradation of the compound, it was hoped that nanoencapsulation would prolong the phytotoxic effects or enhance the bioactivity, thus leading to improved weed control capabilities. This article presents an assessment of the effectiveness of encapsulated ophiobolin A on 11 commonly found weed species, compared to the pure ophiobolin, to the particle alone, and a combination of mixed particles and ophiobolin A, by applying the solution droplets to both intact or injured leaf surface, on the adaxial or abaxial side. The bioassays showed the improved efficacy of the encapsulated ophiobolin, and the need for leaf lesions to diffuse the particles into the tissues.[Formula: see text].


Asunto(s)
Alcaloides , Sesterterpenos , Enfermedades de las Plantas , Control de Malezas
12.
Biomolecules ; 11(2)2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33567651

RESUMEN

Drechslera gigantea Heald & Wolf is a worldwide-spread necrotrophic fungus closely related to the Bipolaris genus, well-known because many member species provoke severe diseases in cereal crops and studied because they produce sesterpenoid phytoxins named ophiobolins which possess interesting biological properties. The unfolded protein response (UPR) is a conserved mechanism protecting eukaryotic cells from the accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER). In plants, consolidated evidence supports the role of UPR in the tolerance to abiotic stress, whereas much less information is available concerning the induction of ER stress by pathogen infection and consequent UPR elicitation as part of the defense response. In this study, the infection process of D. gigantea in Arabidopsis thaliana wild type and UPR-defective bzip28 bzip60 double mutant plants was comparatively investigated, with the aim to address the role of UPR in the expression of resistance to the fungal pathogen. The results of confocal microscopy, as well as of qRT-PCR transcript level analysis of UPR genes, proteomics, microRNAs expression profile and HPLC-based hormone analyses demonstrated that ophiobolin produced by the fungus during infection compromised ER integrity and that impairment of the IRE1/bZIP60 pathway of UPR hampered the full expression of resistance, thereby enhancing plant susceptibility to the pathogen.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Hypocreales/patogenicidad , Respuesta de Proteína Desplegada/genética , Arabidopsis/genética , Arabidopsis/microbiología , Cromatografía Líquida de Alta Presión , Estrés del Retículo Endoplásmico , Regulación de la Expresión Génica de las Plantas , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Estrés Fisiológico
13.
Plants (Basel) ; 10(1)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445708

RESUMEN

Dittrichia viscosa (L.) Greuter, a plant species common in the Mediterranean basin, produces several bioactive compounds, some of which have herbicidal effects. A number of greenhouse and field experiments were carried out in order to evaluate if these effects could be obtained also by using the whole plant biomass, to identify the efficacious doses, determine their effects on seed germination and weed emergence, and to evaluate influence of soil characteristics on biomass efficacy. The experiments carried out evidenced that: (i) the dried biomass completely hampers plant emergence when high doses (30-40 kg biomass m-3 of soil) are mixed into the soil, or delays it at a lower dose (10 kg m-3); (ii) the detrimental effects are not affected by soil type. The exploitation of the D. viscosa dried biomass appears to be a feasible option in weed management practices and its potential is discussed.

14.
Pest Manag Sci ; 77(2): 646-658, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33012130

RESUMEN

BACKGROUND: The organic extracts (OEs) of Dittrichia viscosa, a ruderal plant common in the Mediterranean regions, proved to have herbicidal properties. In order to improve OE effectiveness and to develop novel eco-friendly bioherbicidal products, different amounts of OE were included in poly(butylene succinate)- and polycaprolactone-based films (PBS and PCL, respectively). Particular attention was given to the study of interactions between the polymers and OEs, with a deep spotlight concerning the influence of OEs on structural, morphological and thermal properties of both polymers, in order to assess the OE releasing kinetics from the matrices and its tuned herbicidal action against seeds. RESULTS: The bioassays carried out on Lepidium sativum and Phelipanche ramosa seeds evidenced a more controlled and effective OE release by PBS than PCL, and a longer lasting efficacy by the polymers with a higher OE content. The chemical-physical analyses were performed on films before and after biological assays. The thermogravimetric analysis confirmed that OE was a thermal stabilizer of the polymer; the presence of OE and polymer separated degradative kinetics suggested that only a partial and functional miscibility between polymers and OE occurred. The morphological analysis confirmed the good OE dispersion between PBS and PCL molecular chains. Infrared spectroscopy highlighted the enhanced hydrolysed structure of the doped polymers after the bioassays. These outcomes well matched the quantitative information outlined by release kinetics. DISCUSSION: The use of biodegradable polymers allows the effectiveness and tuning of the release of the formulated bioactive compounds to be improved. The easy-to-obtain and easy-to-formulate OE could become a suitable and environmentally friendly instrument in weed management programmes.


Asunto(s)
Asteraceae , Herbicidas , Herbicidas/farmacología , Extractos Vegetales/farmacología , Poliésteres , Polímeros
15.
J Nat Prod ; 83(11): 3387-3396, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33074690

RESUMEN

Two new bioactive ophiobolan sestertepenoids, named drophiobiolins A and B (1 and 2) were isolated from Drechslera gigantea, a fungus proposed as a mycoherbicide for biocontrol of Digitaria sanguinalis. They were isolated together with ophiobolin A, the main metabolite, 6-epi-ophiobolin A, 3-anhydro-6-epi-ophiobolin A, and ophiobolin I. Drophiobolins A and B were characterized by NMR, HRESIMS, and chemical methods as 7-hydroxy-7-(6-hydroxy-6-methylheptan-2-yl)-1,9a-dimethyl-3-oxo-3,3a,6,6a,7,8,9,9a,10,10a-decahydrodicyclopenta [a,d][8]annulene-4-carbaldehyde and 6-(hydroxymethyl)-3',9,10a-trimethyl-5'-(2-methylprop-1-en-1-yl)-3a,4,4',5',10,10a-hexahydro-1H,3'H-spiro[dicyclopenta[a,d] [8]annulene-3,2'-furan]-5,7(2H,9aH)-dione. The relative configuration of drophiobolins A and B, which did not afford crystals suitable for X-ray analysis, was determined by NOESY experiments, while the absolute configuration was assigned by comparison of their experimental and TDDFT calculated electronic circular dichroism (ECD) spectra. The phytotoxic activity of drophiobolins A and B was tested by leaf-puncture assay on cultivated (Lycopersicon esculentum L.), as well as on host (Digitaria sanguinalis L.) and nonhost (Chenopodium album L.) weed plants, compared to that of ophiobolin A. Both of the newly identified ophiobolins showed significant phytotoxicity. Drophiobolins A and B exhibited cytotoxicity against Hela B cells with an IC50 value of 10 µM. However, they had a lesser or no effect against Hacat, H1299, and A431 cells when compared to that of ophiobolin A.


Asunto(s)
Ascomicetos/química , Sesterterpenos/aislamiento & purificación , Línea Celular , Cristalografía por Rayos X , Humanos , Sesterterpenos/química , Sesterterpenos/farmacología , Análisis Espectral/métodos , Relación Estructura-Actividad
16.
Mycologia ; 112(3): 533-542, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32330111

RESUMEN

COLLETOTRICHUM LUPINI: is the causal agent of lupin (Lupinus albus L.) anthracnose, a destructive seed-borne disease affecting stems and pods. Despite that several biological studies have been carried out on this pathogen, the production of secondary metabolites has not yet been investigated. Thus, a strain of C. lupini, obtained from symptomatic stems of L. albus, has been grown in vitro to evaluate its ability to produce bioactive compounds. From its culture filtrates, a 3-substituted indolinone, named lupindolinone, and a 5,6-disubstituted tetrahydro-α-pyrone, named lupinlactone, were isolated together with the known (3R)-mevalonolactone and tyrosol. Lupindolinone and lupinlactone were characterized as 3-ethylindolin-2-one and 5-hydroxy-6-methyltetrahydropyran-2-one by spectroscopic methods (essentially nuclear magnetic resonance [NMR] and high-resolution electrospray ionization mass spectrometry [HR ESI-MS]). The R absolute configuration (AC) at C-5 of lupinlactone was determined by applying the modified Mosher's method. Thus, considering its relative stereochemistry assigned by NMR spectroscopy, the AC of lupinlactone could be formulated as 5R,6S. Lupindolinone was isolated as racemic mixture as shown by investigation using chiroptical methods. The metabolites were assayed in different biological tests and proved to have some activities at the used concentration.


Asunto(s)
Colletotrichum/metabolismo , Alcaloides Indólicos/análisis , Lupinus/parasitología , Enfermedades de las Plantas , Metabolismo Secundario/fisiología , Estructura Molecular
18.
Org Biomol Chem ; 17(9): 2508-2515, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30758008

RESUMEN

Inuloxin A is a promising plant phytotoxic sesquiterpene that deserves further studies to evaluate its potential as a bioherbicide. However, its low solubility in water and its bioavailability could hamper its practical applications. For this reason, inuloxin A was complexed with ß-cyclodextrins by using three different methods, i.e., kneading, co-precipitation and grinding. The resulted complexes were fully characterized by different techniques such as 1H NMR, UV-vis, XRD, DSC and SEM, and they were biologically assayed in comparison with the pure compound in several biological systems. The efficacy of the kneading and grinding complexes was similar to that of inuloxin A and these complexes almost completely inhibit Phelipanche ramosa seed germination. The complete solubility in water and the preservation of the biological properties of these two complexes could allow further studies to develop a novel natural herbicide for parasitic plant management based on these formulations.


Asunto(s)
Portadores de Fármacos/química , Herbicidas/toxicidad , Orobanche/efectos de los fármacos , Malezas/efectos de los fármacos , Sesquiterpenos de Germacrano/toxicidad , Sesquiterpenos/toxicidad , beta-Ciclodextrinas/química , Germinación/efectos de los fármacos , Herbicidas/administración & dosificación , Herbicidas/química , Orobanche/crecimiento & desarrollo , Malezas/crecimiento & desarrollo , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Sesquiterpenos/administración & dosificación , Sesquiterpenos/química , Sesquiterpenos de Germacrano/administración & dosificación , Sesquiterpenos de Germacrano/química , Solubilidad
19.
Pest Manag Sci ; 75(9): 2403-2412, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30672106

RESUMEN

Natural compounds and living organisms continue to play a limited role in crop protection, and few of them have reached the market, despite their attractiveness and the efforts made in research. Very often these products have negative characteristics compared to synthetic compounds, e.g., higher costs of production, lower effectiveness, lack of persistence, and inability to reach and penetrate the target plant. Conversely, nanotechnologies are having an enormous impact on all human activities, including agriculture, even if the production of some nanomaterials is not environmentally friendly or could have adverse effects on agriculture and the environment. Thus, certain nanomaterials could facilitate the development of formulated natural pesticides, making them more effective and more environmentally friendly. Nanoformulations can improve efficacy, reduce effective doses, and increase shelf-life and persistence. Such controlled-release products can improve delivery to the target pest. This review considers certain available nanomaterials and nanotechnologies for use in agriculture, discussing their properties and the feasibility of their use in sustainable crop protection, in particular, in improving the effectiveness of natural bio-based agrochemicals. © 2019 Society of Chemical Industry.


Asunto(s)
Agroquímicos/farmacología , Productos Biológicos/farmacología , Nanotecnología/métodos
20.
J Nat Prod ; 81(12): 2700-2709, 2018 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-30457871

RESUMEN

A strain of the pathogenic fungus Ascochyta lentis isolated from lentil ( Lens culinaris) was studied to ascertain its capability to produce bioactive metabolites. From the culture filtrates were found three new anthraquinone derivatives, named lentiquinones A (1), B (2), and C (3), and the known lentisone. From the mycelium, four known analogues were identified, namely pachybasin (in larger amount), ω-hydroxypachybasin, 1,7-dihydroxy-3-methylanthracene-9,10-dione, and phomarin. Lentiquinones A-C were characterized by spectroscopic methods as 3,4,6-trihydroxy-8-methyl-2 H-benzo[ g]chromene-5,10-dione, 2,3,4,5,10-pentahydroxy-7-methyl-3,4,4a,10-tetrahydroanthracen-9(2 H)-one, and its 2-epimer, respectively, and the relative configuration of the two latter compounds was deduced by X-ray diffraction data analysis. The absolute configuration of lentiquinones B and C was determined as (2 R,3 S,4 S,4a S,10 R) and (2 S,3 S,4 S,4a S,10 R), respectively, by electronic circular dichroism (ECD) in solution and solid state, and TDDFT calculations. When tested by using different bioassays, the novel compounds showed interesting activities. In particular, applied to punctured leaves of host and nonhost plants, the three new compounds and lentisone caused severe necrosis, with lentiquinone A being the most active among the new metabolites. On cress ( Lepidium sativum), this latter compound proved to be particularly active in inhibiting root elongation. On Lemna minor all the compounds reduced the content of chlorophyll, with 1,7-dihyroxy-3-methylanthracene-9,10-dione being the most active. The new compounds, together with lentisone, proved to have antibiotic properties.


Asunto(s)
Antraquinonas/aislamiento & purificación , Ascomicetos/química , Lens (Planta)/microbiología , Micotoxinas/aislamiento & purificación , Antraquinonas/química , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Antifúngicos/química , Antifúngicos/aislamiento & purificación , Antifúngicos/farmacología , Germinación/efectos de los fármacos , Estructura Molecular , Micotoxinas/farmacología , Plantas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...