Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 345: 123539, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38341066

RESUMEN

Plasticizers such as phthalate esters (PAEs) are commonly used in various consumer and industrial products. This widespread use raises valid concerns regarding their ubiquity in the environment and potential negative impacts. The present study investigates the distribution of eight common plasticizers in the largest European lagoon (Curonian Lagoon) located in the SE Baltic Sea. The concentration levels of plasticizers in the water column, containing both the dissolved and particulate-bound phases, and in sediments were evaluated to reveal seasonal patterns in distribution and potential effects on the lagoon ecosystem. A total of 24 water samples and 48 sediment samples were collected across all four seasons from the two dominant sedimentary areas within the lagoon. The average concentration of total PAEs in the water column ranged from 1 to 21 µg L-1, whereas sediment concentration varied from 5.0 to 250 ng g-1. The distribution of plasticizers was influenced by the patterns in hydrodynamics and water circulation within the lagoon. The confined south-central area contained a higher amount of PAEs in sediments, accounting for most of the lagoon's plasticizer accumulation. More than 7 tons of plasticizers are stored in the 5 upper centimetres of sediment, with over 3 tons persisting for more than five years. Di(2-ethylhexyl) phthalate (DEHP), Diisobutyl phthalate (DiBP), and Dibutyl phthalate (DnBP) were the most abundant PAE congeners, with DEHP posing the highest risk quotient to algae, based on water column concentration. Several other congeners demonstrated medium to high-risk levels for organisms living in the lagoon.


Asunto(s)
Dietilhexil Ftalato , Ácidos Ftálicos , Plastificantes/análisis , Estaciones del Año , Ecosistema , Ríos , Ésteres , Dibutil Ftalato , Agua , China
2.
Sci Total Environ ; 921: 171070, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38382608

RESUMEN

In coastal lagoons, eutrophication and hydrology are interacting factors that produce distortions in biogeochemical nitrogen (N) and phosphorus (P) cycles. Such distortions affect nutrient relative availability and produce cascade consequences on primary producer's community and ecosystem functioning. In this study, the seasonal functioning of a coastal lagoon was investigated with a multielement approach, via the construction and analysis of network models. Spring and summer networks, both for N and P flows, have been simultaneously compiled for the northern transitional and southern confined area of the hypertrophic Curonian Lagoon (SE Baltic Sea). Ecological Network Analysis was applied to address the combined effect of hydrology and seasonality on biogeochemical processes. Results suggest that the ecosystem is more active and presents higher N and P fluxes in summer compared to spring, regardless of the area. Furthermore, larger internal recycling characterizes the confined compared to the transitional area, regardless of the season. The two areas differed in the fate of available nutrients. The transitional area received large riverine inputs that were mainly transferred to the sea without the conversion into primary producers' biomass. The confined area had fewer inputs but proportionally larger conversion into phytoplankton biomass. In summer, particularly in the confined area, primary production was inefficiently consumed by herbivores. Most phytoplanktonic N and P, in the confined area more than in the transitional area, were conveyed to the detritus pathway where P, more than N, was recycled, contributing to the unbalance in N:P stoichiometry and favouring N-fixing cyanobacteria over other phytoplankton groups. The findings of this study provide a comprehensive understanding of N and P circulation patterns in lagoon areas characterized by different hydrology. They also support the importance of a stoichiometric approach to trace relative differences in N and P recycling and abundance, that promote blooms, drive algal communities and whole ecosystem functioning.


Asunto(s)
Ecosistema , Nitrógeno , Nitrógeno/análisis , Fósforo/análisis , Biomasa , Fitoplancton , Eutrofización
3.
Mar Pollut Bull ; 200: 116084, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309175

RESUMEN

In temperate coastal areas, the resident population often increases during holidays. As a result, this can lead to higher wastewater production and release of pollutants. The connection between micropollutants such as plasticizers and hormones with the changing resident population along the Baltic Sea coast has yet to be thoroughly studied. Therefore, we have monitored the wastewater quality and specific micropollutants before and after treatment at wastewater treatment plants (WWTPs) at small and large seaside resorts. The findings indicate a strong link between tourism indicators and wastewater production during the summer months. The rise in different micropollutants, specifically plasticizers, during the summer demonstrates a link with tourism activity. Furthermore, we have identified a non-linear association between the tourism indicators and the total estrogenic equivalent (EEQ). Overall, this research particularly emphasizes the growing importance of wastewater quality in terms of conventional nutrient pollution and various micropollutants.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Aguas Residuales , Lituania , Plastificantes , Contaminantes Químicos del Agua/análisis , Eliminación de Residuos Líquidos
4.
Environ Res ; 235: 116667, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37453508

RESUMEN

Phthalate esters (PAEs) due to their ability to leach from plastics, widely used in our daily life, are intensely accumulating in wastewater water treatment plants (WWTP) and rivers, before being exported to downstream situated estuarine systems. This study aimed to investigate the external sources of eight plasticizers to the largest European lagoon (the Curonian Lagoon, south-east Baltic Sea), focusing on their seasonal variation and transport behaviour through the partitioning between dissolved and particulate phases. The obtained results were later combined with hydrological inputs at the inlet and outlet of the lagoon to estimate system role in regulating the transport of pollutants to the sea. Plasticizers were detected during all sampling events with a total concentration ranging from 0.01 to 6.17 µg L-1. Di(2-ethylhexyl) phthalate (DEHP) was the most abundant PAEs and was mainly found attached to particulate matter, highlighting the importance of this matrix in the transport of such contaminant. Dibutyl phthalate (DnBP) and diisobutyl phthalate (DiBP) were the other two dominant PAEs found in the area, mainly detected in dissolved phase. Meteorological conditions appeared to be an important factor regulating the distribution of PAEs in environment. During the river ice-covered season, PAEs concentration showed the highest value suggesting the importance of ice in the retention of PAEs. While heavy rainfall impacts the amount of water delivered to WWTP, there is an increase of PAEs concentration supporting the hypothesis of their transport via soil leaching and infiltration into wastewater networks. Rainfall could also be a direct source of PAEs to the lagoon resulting in net surplus export of PAEs to the Baltic Sea.


Asunto(s)
Dietilhexil Ftalato , Ácidos Ftálicos , Plastificantes/análisis , Estaciones del Año , Aguas Residuales , Hielo , Ésteres , China
5.
Water Res ; 194: 116954, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33667950

RESUMEN

Since the start of synthetic fertilizer production more than a hundred years ago, the coastal ocean has been exposed to increasing nutrient loading, which has led to eutrophication and extensive algal blooms. Such hypereutrophic waters might harbor anaerobic nitrogen (N) cycling processes due to low-oxygen microniches associated with abundant organic particles, but studies on nitrate reduction in coastal pelagic environments are scarce. Here, we report on 15N isotope-labeling experiments, metagenome, and RT-qPCR data from a large hypereutrophic lagoon indicating that dissimilatory nitrate reduction to ammonium (DNRA) and denitrification were active processes, even though the bulk water was fully oxygenated (> 224 µM O2). DNRA in the bottom water corresponded to 83% of whole-ecosystem DNRA (water + sediment), while denitrification was predominant in the sediment. Microbial taxa important for DNRA according to the metagenomic data were dominated by Bacteroidetes (genus Parabacteroides) and Proteobacteria (genus Wolinella), while denitrification was mainly associated with proteobacterial genera Pseudomonas, Achromobacter, and Brucella. The metagenomic and microscopy data suggest that these anaerobic processes were likely occurring in low-oxygen microniches related to extensive growth of filamentous cyanobacteria, including diazotrophic Dolichospermum and non-diazotrophic Planktothrix. By summing the total nitrate fluxes through DNRA and denitrification, it results that DNRA retains approximately one fifth (19%) of the fixed N that goes through the nitrate pool. This is noteworthy as DNRA represents thus a very important recycling mechanism for fixed N, which sustains algal proliferation and leads to further enhancement of eutrophication in these endangered ecosystems.


Asunto(s)
Compuestos de Amonio , Desnitrificación , Ecosistema , Nitratos , Nitrógeno , Óxidos de Nitrógeno
6.
Front Microbiol ; 11: 610269, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33542710

RESUMEN

Bivalves are ubiquitous filter-feeders able to alter ecosystems functions. Their impact on nitrogen (N) cycling is commonly related to their filter-feeding activity, biodeposition, and excretion. A so far understudied impact is linked to the metabolism of the associated microbiome that together with the host constitute the mussel's holobiont. Here we investigated how colonies of the invasive zebra mussel (Dreissena polymorpha) alter benthic N cycling in the shallow water sediment of the largest European lagoon (the Curonian Lagoon). A set of incubations was conducted to quantify the holobiont's impact and to quantitatively compare it with the indirect influence of the mussel on sedimentary N transformations. Zebra mussels primarily enhanced the recycling of N to the water column by releasing mineralized algal biomass in the form of ammonium and by stimulating dissimilatory nitrate reduction to ammonium (DNRA). Notably, however, not only denitrification and DNRA, but also dinitrogen (N2) fixation was measured in association with the holobiont. The diazotrophic community of the holobiont diverged substantially from that of the water column, suggesting a unique niche for N2 fixation associated with the mussels. At the densities reported in the lagoon, mussel-associated N2 fixation may account for a substantial (and so far, overlooked) source of bioavailable N. Our findings contribute to improve our understanding on the ecosystem-level impact of zebra mussel, and potentially, of its ability to adapt to and colonize oligotrophic environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...