Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 11: 189, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32226391

RESUMEN

Our understanding of the general principles of the polymodal regulation of transient receptor potential (TRP) ion channels has grown impressively in recent years as a result of intense efforts in protein structure determination by cryo-electron microscopy. In particular, the high-resolution structures of various TRP channels captured in different conformations, a number of them determined in a membrane mimetic environment, have yielded valuable insights into their architecture, gating properties and the sites of their interactions with annular and regulatory lipids. The correct repertoire of these channels is, however, organized by supramolecular complexes that involve the localization of signaling proteins to sites of action, ensuring the specificity and speed of signal transduction events. As such, TRP ankyrin 1 (TRPA1), a major player involved in various pain conditions, localizes into cholesterol-rich sensory membrane microdomains, physically interacts with calmodulin, associates with the scaffolding A-kinase anchoring protein (AKAP) and forms functional complexes with the related TRPV1 channel. This perspective will contextualize the recent biochemical and functional studies with emerging structural data with the aim of enabling a more thorough interpretation of the results, which may ultimately help to understand the roles of TRPA1 under various physiological and pathophysiological pain conditions. We demonstrate that an alteration to the putative lipid-binding site containing a residue polymorphism associated with human asthma affects the cold sensitivity of TRPA1. Moreover, we present evidence that TRPA1 can interact with AKAP to prime the channel for opening. The structural bases underlying these interactions remain unclear and are definitely worth the attention of future studies.

2.
Curr Opin Cell Biol ; 63: 154-161, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32097833

RESUMEN

The mammalian flagellum is a specific type of motile cilium required for sperm motility and male fertility. Effective flagellar movement is dependent on axonemal function, which in turn relies on proper ion homeostasis within the flagellar compartment. This ion homeostasis is maintained by the concerted function of ion channels and transporters that initiate signal transduction pathways resulting in motility changes. Advances in electrophysiology and super-resolution microscopy have helped to identify and characterize new regulatory modalities of the mammalian flagellum. Here, we discuss what is currently known about the regulation of flagellar ion channels and transporters that maintain sodium, potassium, calcium, and proton homeostasis. Identification of new regulatory elements and their specific roles in sperm motility is imperative for improving diagnostics of male infertility.


Asunto(s)
Motilidad Espermática/fisiología , Cola del Espermatozoide/fisiología , Animales , Calcio/metabolismo , Canales de Calcio/metabolismo , Canales de Calcio/fisiología , Humanos , Masculino , Transducción de Señal/fisiología , Motilidad Espermática/genética , Cola del Espermatozoide/metabolismo , Espermatozoides/metabolismo , Espermatozoides/fisiología
3.
Int J Mol Sci ; 20(16)2019 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-31426314

RESUMEN

The vanilloid transient receptor potential channel TRPV3 is a putative molecular thermosensor widely considered to be involved in cutaneous sensation, skin homeostasis, nociception, and pruritus. Repeated stimulation of TRPV3 by high temperatures above 50 °C progressively increases its responses and shifts the activation threshold to physiological temperatures. This use-dependence does not occur in the related heat-sensitive TRPV1 channel in which responses decrease, and the activation threshold is retained above 40 °C during activations. By combining structure-based mutagenesis, electrophysiology, and molecular modeling, we showed that chimeric replacement of the residues from the TRPV3 cytoplasmic inter-subunit interface (N251-E257) with the homologous residues of TRPV1 resulted in channels that, similarly to TRPV1, exhibited a lowered thermal threshold, were sensitized, and failed to close completely after intense stimulation. Crosslinking of this interface by the engineered disulfide bridge between substituted cysteines F259C and V385C (or, to a lesser extent, Y382C) locked the channel in an open state. On the other hand, mutation of a single residue within this region (E736) resulted in heat resistant channels. We propose that alterations in the cytoplasmic inter-subunit interface produce shifts in the channel gating equilibrium and that this domain is critical for the use-dependence of the heat sensitivity of TRPV3.


Asunto(s)
Citoplasma/metabolismo , Canales Catiónicos TRPV/metabolismo , Células HEK293 , Calor , Humanos , Simulación de Dinámica Molecular , Mutación , Dominios Proteicos , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/genética
4.
Sci Signal ; 11(514)2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29363587

RESUMEN

Transient receptor potential ankyrin 1 (TRPA1) is a temperature-sensitive ion channel activated by various pungent and irritant compounds that can produce pain in humans. Its activation involves an allosteric mechanism whereby electrophilic agonists evoke interactions within cytosolic domains and open the channel pore through an integrated nexus formed by intracellular membrane proximal regions that are densely packed beneath the lower segment of the S1-S4 sensor domain. Studies indicate that this part of the channel may contain residues that form a water-accessible cavity that undergoes changes in solvation during channel gating. We identified conserved polar residues facing the putative lower crevice of the sensor domain that were crucial determinants of the electrophilic, voltage, and calcium sensitivity of the TRPA1 channel. This part of the sensor may also comprise a domain capable of binding to membrane phosphoinositides through which gating of the channel is regulated in a state-dependent manner.


Asunto(s)
Calcio/metabolismo , Activación del Canal Iónico , Potenciales de la Membrana , Canal Catiónico TRPA1/fisiología , Regulación Alostérica , Secuencia de Aminoácidos , Células HEK293 , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Conformación Proteica , Dominios Proteicos , Homología de Secuencia , Canal Catiónico TRPA1/química
5.
J Biol Chem ; 292(51): 21083-21091, 2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29084846

RESUMEN

The transient receptor potential vanilloid 3 (TRPV3) channel is a Ca2+-permeable thermosensitive ion channel widely expressed in keratinocytes, where together with epidermal growth factor receptor (EGFR) forms a signaling complex regulating epidermal homeostasis. Proper signaling through this complex is achieved and maintained via several pathways in which TRPV3 activation is absolutely required. Results of recent studies have suggested that low-level constitutive activity of TRPV3 induces EGFR-dependent signaling that, in turn, amplifies TRPV3 via activation of the mitogen-activated protein kinase ERK in a positive feedback loop. Here, we explored the molecular mechanism that increases TRPV3 activity through EGFR activation. We used mutagenesis and whole-cell patch clamp experiments on TRPV3 channels endogenously expressed in an immortalized human keratinocyte cell line (HaCaT) and in transiently transfected HEK293T cells and found that the sensitizing effect of EGFR on TRPV3 is mediated by ERK. We observed that ERK-mediated phosphorylation of TRPV3 alters its responsiveness to repeated chemical stimuli. Among several putative ERK phosphorylation sites, we identified threonine 264 in the N-terminal ankyrin repeat domain as the most critical site for the ERK-dependent modulation of TRPV3 channel activity. Of note, Thr264 is in close vicinity to a structurally and functionally important TRPV3 region comprising an atypical finger 3 and oxygen-dependent hydroxylation site. In summary, our findings indicate that Thr264 in TRPV3 is a key ERK phosphorylation site mediating EGFR-induced sensitization of the channel to stimulate signaling pathways involved in regulating skin homeostasis.


Asunto(s)
Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/agonistas , Queratinocitos/metabolismo , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Canales Catiónicos TRPV/metabolismo , Regulación hacia Arriba , Compuestos de Boro/farmacología , Línea Celular Transformada , Cimenos , Receptores ErbB/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/enzimología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Moduladores del Transporte de Membrana/farmacología , Proteína Quinasa 3 Activada por Mitógenos/química , Proteína Quinasa 3 Activada por Mitógenos/genética , Monoterpenos/farmacología , Mutagénesis Sitio-Dirigida , Mutación , Técnicas de Placa-Clamp , Fosforilación/efectos de los fármacos , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/genética , Treonina/metabolismo , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA