Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36501735

RESUMEN

This paper describes the combination of experimental measurements with mathematical-physical analysis during the investigation of flow in an aperture at low pressures in a prepared experimental chamber. In the first step, experimental measurements of the pressure in the specimen chamber and at its outlet were taken during the pumping of the chamber. This process converted the atmospheric pressure into the operating pressure typical for the current AQUASEM II environmental electron microscope at the ISI of the CAS in Brno. Based on these results, a mathematical-physical model was tuned in the Ansys Fluent system and subsequently used for mathematical-physical analysis in a slip flow regime on a nozzle wall at low pressure. These analyses will be used to fine-tune the experimental chamber. Once the chamber is operational, it will be possible to compare the results obtained from the experimental measurements of the nozzle wall pressure, static pressure, total pressure and temperature from the nozzle axis region in supersonic flow with the results obtained from the mathematical-physical analyses. Based on the above comparative analyses, we will be able to determine the realistic slip flow at the nozzle wall under different conditions at the continuum mechanics boundary.

2.
Micromachines (Basel) ; 11(2)2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-32012859

RESUMEN

In this work, we demonstrate the simple fabrication process of AlN-based piezoelectric energy harvesters (PEH), which are made of cantilevers consisting of a multilayer ion beam-assisted deposition. The preferentially (001) orientated AlN thin films possess exceptionally high piezoelectric coefficients d33 of (7.33 ± 0.08) pC∙N-1. The fabrication of PEH was completed using just three lithography steps, conventional silicon substrate with full control of the cantilever thickness, in addition to the thickness of the proof mass. As the AlN deposition was conducted at a temperature of ≈330 °C, the process can be implemented into standard complementary metal oxide semiconductor (CMOS) technology, as well as the CMOS wafer post-processing. The PEH cantilever deflection and efficiency were characterized using both laser interferometry, and a vibration shaker, respectively. This technology could become a core feature for future CMOS-based energy harvesters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA