Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36772045

RESUMEN

Two series of hyper-cross-linked microporous polyacetylene networks containing either -[CH=C(CH=O)]- or -[CH=C(CH2OH)]- monomeric units are reported. Networks are prepared by chain-growth copolymerization of acetal-protected propargyl aldehyde and acetal-protected propargyl alcohol with a 1,3,5-triethynylbenzene cross-linker followed by hydrolytic deprotection/detemplating. Deprotection not only liberates reactive CH=O and CH2OH groups in the networks but also modifies the texture of the networks towards higher microporosity and higher specific surface area. The final networks with CH=O and CH2OH groups attached directly to the polyene main chains of the networks have a specific surface area from 400 to 800 m2/g and contain functional groups in a high amount, up to 9.6 mmol/g. The CH=O and CH2OH groups in the networks serve as active centres for the reversible capture of CO2 and water vapour. The water vapour capture capacities of the networks (up to 445 mg/g at 297 K) are among the highest values reported for porous polymers, making these materials promising for cyclic water harvesting from the air. Covalent modification of the networks with (R)-(+)-3-aminopyrrolidine and (S)-(+)-2-methylbutyric acid enables the preparation of porous chiral networks and shows networks with CH=O and CH2OH groups as reactive supports suitable for the anchoring of various functional molecules.

2.
Macromol Rapid Commun ; 42(15): e2100209, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34050705

RESUMEN

New hyper-cross-linked porous organic polymers (POPs) with a high content of pyridine segments (7.86 mmol pyridine g-1 ), and a micro/mesoporous texture are reported. The networks are achieved by the chain-growth homopolymerization of 2,6- and 3,5-diethynylpyridines. The pyridine segments form links interconnecting the polyacetylene main chains in these networks. The content of pyridine segments in the networks can be tuned by copolymerizing diethynylpyridines with 1,3-diethynylbenzene. The pyridine rings in the networks serve as base and hydrophilic centers for the sorption of CO2 and water. The homopolymer pyridine networks are highly efficient in the low-pressure adsorption/desorption of CO2 . This sorption mode is promising for the postcombustion removal of CO2 from the fuel gas. The poly(3,5-diethynylpyridine) network exhibits high efficiency in capturing and releasing water vapor (determined capacity 376 mg g-1 at 298 K and relative humidity (RH) = 90% is one of the highest values reported for POPs) and is a promising material for the cyclic water harvesting from air. The reported networks are characterized by 13 C cross-polarization magic angle spinning NMR, thermogravimetric analysis, and N2 adsorption/desorption and their efficiency in CO2 and H2 O capturing is discussed in relation to the content and type of incorporated pyridine segments.


Asunto(s)
Dióxido de Carbono , Polímeros , Adsorción , Piridinas , Agua
3.
Chemistry ; 24(55): 14742-14749, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29969516

RESUMEN

Heterogeneous catalysts based on materials with permanent porosity are of great interest owing to their high specific surface area, easy separation, recovery, and recycling ability. Additionally, porous polymer catalysts (PPCs) allow us to tune catalytic activity by introducing various functional centres. This study reports the preparation of PPCs with a permanent micro/mesoporous texture and a specific surface area SBET of up to 1000 m2 g-1 active in acid-catalyzed reactions, namely aldehyde and ketone acetalization and carboxylic acid esterification. These PPC-type conjugated hyper-cross-linked polyarylacetylene networks were prepared by chain-growth homopolymerization of 1,4-diethynylbenzene, 1,3,5-triethynylbenzene and tetrakis(4-ethynylphenyl)methane. However, only some ethynyl groups of the monomers (from 58 to 80 %) were polymerized into the polyacetylene network segments while the other ethynyl groups remained unreacted. Depending on the number of ethynyl groups per monomer molecule and the covalent structure of the monomer, PPCs were decorated with unreacted ethynyl groups from 3.2 to 6.7 mmol g-1 . The hydrogen atoms of the unreacted ethynyl groups served as acid catalytic centres of the aforementioned organic reactions. To the best of our knowledge, this is first study describing the high activity of hydrogen atoms of ethynyl groups in acid-catalyzed reactions.

4.
Environ Toxicol Pharmacol ; 52: 214-220, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28445845

RESUMEN

The aim of the study was to compare the adsorption ability of two adsorbent materials, namely diosmectite and activated charcoal towards selected model compounds that are most commonly involved in acute intoxication. Eleven model compounds were selected: acetylsalicylic acid, α-amanitin, amlodipine, digoxin, phenobarbital, ibuprofen, imipramine, carbamazepine, oxazepam, promethazine, and theophylline. Of the tested compounds, promethazine and imipramine were the most effectively adsorbed to diosmectite. Their adsorption to diosmectite (0.356±0.029mg promethazine/mg diosmectite and 0.354±0.019mg imipramine/mg diosmectite, respectively) was significantly higher than their adsorption to activated charcoal. The effect of temperature and pH on the adsorption efficiencies was also evaluated. In the case of experiments with mixture of both adsorbents, they mostly behaved in a solution independently or in a slightly antagonistic way. Using various methods such as N2 adsorption and thermogravimetric analysis, the structure and texture of diosmectite and activated charcoal were attained.


Asunto(s)
Antídotos/química , Carbón Orgánico/química , Intoxicación/prevención & control , Silicatos/química , Adsorción , Alfa-Amanitina/química , Amlodipino/química , Aspirina/química , Carbamazepina/química , Digoxina/química , Ibuprofeno/química , Imipramina/química , Oxazepam/química , Fenobarbital/química , Prometazina/química , Teofilina/química
5.
Materials (Basel) ; 7(4): 2650-2668, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-28788588

RESUMEN

The presented report focuses on an in-depth detailed characterization of immobilized methyltrioxorhenium (MTO), giving catalysts with a wide spectra of utilization. The range of mesoporous materials with different SiO2/Al2O3 ratios, namely mesoporous alumina (MA), aluminosilicates type Siral (with Al content 60%-90%) and MCM-41, were used as supports for immobilization of MTO. The tested support materials (aluminous/siliceous) exhibited high surface area, well-defined regular structure and narrow pore size distribution of mesopores, and therefore represent excellent supports for the active components. Some of the supports were modified by zinc chloride in order to obtain catalysts with higher activities for instance in metathesis reactions. The immobilization of MTO was optimized using these supports and it was successful using all supports. The success of the immobilization of MTO and the properties of the prepared heterogeneous catalysts were characterized using X-ray Fluorescence (XRF), atomic absorption spectroscopy (AAS), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), physical adsorption of N2, ultraviolet-visible spectroscopy (UV-Vis), infrared spectroscopy (FTIR), Fourier Transform Infrared Spectroscopy (FTIR) using pyridine as a probe molecule and X-ray photoelectron spectroscopy (XPS). Furthermore, the catalytic activity of the immobilized MTO on the tested supports was demonstrated on metathesis reactions of various substrates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...