Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(5)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800215

RESUMEN

With the further development of highly automated vehicles, drivers will engage in non-related tasks while being driven. Still, drivers have to take over control when requested by the car. Here, the question arises, how potentially distracted drivers get back into the control-loop quickly and safely when the car requests a takeover. To investigate effective human-machine interactions, a mobile, versatile, and cost-efficient setup is needed. Here, we describe a virtual reality toolkit for the Unity 3D game engine containing all the necessary code and assets to enable fast adaptations to various human-machine interaction experiments, including closely monitoring the subject. The presented project contains all the needed functionalities for realistic traffic behavior, cars, pedestrians, and a large, open-source, scriptable, and modular VR environment. It covers roughly 25 km2, a package of 125 animated pedestrians, and numerous vehicles, including motorbikes, trucks, and cars. It also contains all the needed nature assets to make it both highly dynamic and realistic. The presented repository contains a C++ library made for LoopAR that enables force feedback for gaming steering wheels as a fully supported component. It also includes all necessary scripts for eye-tracking in the used devices. All the main functions are integrated into the graphical user interface of the Unity® editor or are available as prefab variants to ease the use of the embedded functionalities. This project's primary purpose is to serve as an open-access, cost-efficient toolkit that enables interested researchers to conduct realistic virtual reality research studies without costly and immobile simulators. To ensure the accessibility and usability of the mentioned toolkit, we performed a user experience report, also included in this paper.


Asunto(s)
Peatones , Realidad Virtual , Adaptación Fisiológica , Automóviles , Humanos , Vehículos a Motor
2.
Sci Eng Ethics ; 25(2): 399-418, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-29357047

RESUMEN

Ethical thought experiments such as the trolley dilemma have been investigated extensively in the past, showing that humans act in utilitarian ways, trying to cause as little overall damage as possible. These trolley dilemmas have gained renewed attention over the past few years, especially due to the necessity of implementing moral decisions in autonomous driving vehicles (ADVs). We conducted a set of experiments in which participants experienced modified trolley dilemmas as drivers in virtual reality environments. Participants had to make decisions between driving in one of two lanes where different obstacles came into view. Eventually, the participants had to decide which of the objects they would crash into. Obstacles included a variety of human-like avatars of different ages and group sizes. Furthermore, the influence of sidewalks as potential safe harbors and a condition implicating self-sacrifice were tested. Results showed that participants, in general, decided in a utilitarian manner, sparing the highest number of avatars possible with a limited influence by the other variables. Derived from these findings, which are in line with the utilitarian approach in moral decision making, it will be argued for an obligatory ethics setting implemented in ADVs.


Asunto(s)
Inteligencia Artificial/ética , Automatización/ética , Conducción de Automóvil/psicología , Automóviles/ética , Toma de Decisiones/ética , Teoría Ética , Altruismo , Guías como Asunto , Humanos , Principios Morales , Realidad Virtual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA