Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuromolecular Med ; 23(1): 86-98, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33210212

RESUMEN

Peroxisome proliferator-activated receptor (PPAR) ß/δ belongs to the family of hormone and lipid-activated nuclear receptors, which are involved in metabolism of long-chain fatty acids, cholesterol, and sphingolipids. Similar to PPAR-α and PPAR-γ, PPAR-ß/δ also acts as a transcription factor activated by dietary lipids and endogenous ligands, such as long-chain saturated and polyunsaturated fatty acids, and selected lipid metabolic products, such as eicosanoids, leukotrienes, lipoxins, and hydroxyeicosatetraenoic acids. Together with other PPARs, PPAR-ß/δ displays transcriptional activity through interaction with retinoid X receptor (RXR). In general, PPARs have been shown to regulate cell differentiation, proliferation, and development and significantly modulate glucose, lipid metabolism, mitochondrial function, and biogenesis. PPAR-ß/δ appears to play a special role in inflammatory processes and due to its proangiogenic and anti-/pro-carcinogenic properties, this receptor has been considered as a therapeutic target for treating metabolic syndrome, dyslipidemia, carcinogenesis, and diabetes. Until now, most studies were carried out in the peripheral organs, and despite of its presence in brain cells and in different brain regions, its role in neurodegeneration and neuroinflammation remains poorly understood. This review is intended to describe recent insights on the impact of PPAR-ß/δ and its novel agonists on neuroinflammation and neurodegenerative disorders, including Alzheimer's and Parkinson's, Huntington's diseases, multiple sclerosis, stroke, and traumatic injury. An important goal is to obtain new insights to better understand the dietary and pharmacological regulations of PPAR-ß/δ and to find promising therapeutic strategies that could mitigate these neurological disorders.


Asunto(s)
Enfermedades Neurodegenerativas/fisiopatología , PPAR delta/fisiología , PPAR-beta/fisiología , Antineoplásicos/uso terapéutico , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Sistemas de Liberación de Medicamentos , Células Endoteliales/metabolismo , Glioma/tratamiento farmacológico , Glioma/metabolismo , Inflamación , Metabolismo de los Lípidos , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Neuroglía/metabolismo , Neuronas/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo , PPAR delta/agonistas , PPAR-beta/agonistas , Receptores X Retinoide/fisiología , Transducción de Señal , Transcripción Genética
2.
Mol Neurobiol ; 57(6): 2799-2811, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32356173

RESUMEN

The imbalance in sphingolipid signaling may be critically linked to the upstream events in the neurodegenerative cascade of Alzheimer's disease (AD). We analyzed the influence of mutant (V717I) amyloid ß precursor protein (AßPP) transgene on sphingolipid metabolism enzymes in mouse hippocampus. At 3 months of age AßPP/Aß presence upregulated enzymes of ceramide turnover on the salvage pathway: ceramide synthases (CERS2, CERS4, CERS6) and also ceramidase ACER3. At 6 months, only CERS6 was elevated, and no ceramide synthase was increased at 12 months. However, sphingomyelin synthases, which utilize ceramide on the sphingomyelinase pathway, were reduced (SGMS1 at 12 and SGMS2 at 6 months). mRNAs for sphingomyelin synthases SGMS1 and SGMS2 were also significantly downregulated in human AD hippocampus and neocortex when compared with age-matched controls. Our findings suggest early-phase deregulation of sphingolipid homeostasis in favor of ceramide signaling. Fingolimod (FTY720), a modulator of sphingosine-1-phosphate receptors countered the AßPP-dependent upregulation of hippocampal ceramide synthase CERS2 at 3 months. Moreover, at 12 months, FTY720 increased enzymes of ceramide-sphingosine turnover: CERS4, ASAH1, and ACER3. We also observed influence of fingolimod on the expression of the sphingomyelinase pathway enzymes. FTY720 counteracted the AßPP-linked reduction of sphingomyelin synthases SGMS1/2 (at 12 and 6 months, respectively) and led to elevation of sphingomyelinase SMPD2 (at 6 and 12 months). Therefore, our results demonstrate potentially beneficial, age-specific effects of fingolimod on transcription of sphingolipid metabolism enzymes in an animal model of AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Ceramidas/metabolismo , Clorhidrato de Fingolimod/farmacología , Hipocampo/efectos de los fármacos , Metabolismo de los Lípidos/genética , Transcripción Genética/efectos de los fármacos , Enfermedad de Alzheimer/genética , Animales , Ceramidasas/genética , Ceramidasas/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo , Femenino , Hipocampo/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Neocórtex/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo
3.
Neurochem Res ; 45(5): 972-988, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32170673

RESUMEN

Peroxisome proliferator activated receptor alpha (PPAR-α) belongs to the family of ligand-regulated nuclear receptors (PPARs). These receptors after heterodimerization with retinoid X receptor (RXR) bind in promotor of target genes to PPAR response elements (PPREs) and act as a potent transcription factors. PPAR-α and other receptors from this family, such as PPAR-ß/δ and PPAR-γ are expressed in the brain and other organs and play a significant role in oxidative stress, energy homeostasis, mitochondrial fatty acids metabolism and inflammation. PPAR-α takes part in regulation of genes coding proteins that are involved in glutamate homeostasis and cholinergic/dopaminergic signaling in the brain. Moreover, PPAR-α regulates expression of genes coding enzymes engaged in amyloid precursor protein (APP) metabolism. It activates gene coding of α secretase, which is responsible for non-amyloidogenic pathway of APP degradation. It also down regulates ß secretase (BACE-1), the main enzyme responsible for amyloid beta (Aß) peptide release in Alzheimer Diseases (AD). In AD brain expression of genes of PPAR-α and PPAR-γ coactivator-1 alpha (PGC-1α) is significantly decreased. PPARs are altered not only in AD but in other neurodegenerative/neurodevelopmental and psychiatric disorder. PPAR-α downregulation may decrease anti-oxidative and anti-inflammatory processes and could be responsible for the alteration of fatty acid transport, lipid metabolism and disturbances of mitochondria function in the brain of AD patients. Specific activators of PPAR-α may be important for improvement of brain cells metabolism and cognitive function in neurodegenerative and neurodevelopmental disorders.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Sistemas de Liberación de Medicamentos/tendencias , PPAR alfa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Encéfalo/efectos de los fármacos , Fenofibrato/administración & dosificación , Fenofibrato/metabolismo , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , PPAR alfa/agonistas
4.
Mol Neurobiol ; 57(3): 1374-1388, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31734880

RESUMEN

A growing body of evidence indicates that pathological forms of amyloid beta (Aß) peptide contribute to neuronal degeneration and synaptic loss in Alzheimer's disease (AD). In this study, we investigated the impact of exogenous Aß1-42 oligomers (AßO) and endogenously liberated Aß peptides on transcription of genes for anti-oxidative and mitochondria-related proteins in cell lines (neuronal SH-SY5Y and microglial BV2) and in brain cortex of transgenic AD (Tg-AD) mice, respectively. Our results demonstrated significant AßO-evoked changes in transcription of genes in SH-SY5Y cells, where AßO enhanced expression of Sod1, Cat, mt-Nd1, Bcl2, and attenuated Sirt5, Sod2 and Sdha. In BV2 line, AßO increased the level of mRNA for Sod2, Dnm1l, Bcl2, and decreased for Gpx4, Sirt1, Sirt3, mt-Nd1, Sdha and Mfn2. Then, AßO enhanced free radicals level and impaired mitochondrial membrane potential only in SH-SY5Y cells, but reduced viability of both cell types. Inhibitor of poly(ADP-ribose)polymerase-1 and activator of sirtuin-1 more efficiently enhanced viability of SH-SY5Y than BV2 affected by AßO. Analysis of brain cortex of Tg-AD mice confirmed significant downregulation of Sirt1, Mfn1 and mt-Nd1 and upregulation of Dnm1l. In human AD brain, changes of microRNA pattern (miRNA-9, miRNA-34a, miRNA-146a and miRNA-155) seem to be responsible for decrease in Sirt1 expression. Overall, our results demonstrated a diverse response of neuronal and microglial cells to AßO toxicity. Alterations of genes encoding Sirt1, Mfn1 and Drp1 in an experimental model of AD suggest that modulation of mitochondria dynamics and Sirt1, including miRNA strategy, may be crucial for improvement of AD therapy.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/toxicidad , Proteínas Mitocondriales/toxicidad , Estrés Oxidativo/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Humanos , Ratones , MicroARNs/metabolismo , Microglía/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Neuronas/metabolismo
5.
Folia Neuropathol ; 56(3): 196-205, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30509041

RESUMEN

Alzheimer's disease (AD) is characterized by alterations of amyloid precursor protein (APP) metabolism, accumulation of amyloid  peptides (A), hyperphosphorylation of Tau proteins and also by sphingolipids disturbances. These changes lead to oxidative stress, mitochondria dysfunction, synaptic loss and neuro-inflammation. It is known that A may promote ceramides formation and reversely, ceramides could stimulate A peptides release. However, the effect of ceramide and sphingosine-1-phosphate (S1P) on APP metabolism has not been fully elucidated. In this study we investigated the role of ceramide and S1P on APP metabolism. Moreover, the effect of ceramide and SEW 2871 (agonist for S1P receptor-1) on Sirt1 (NAD+-dependent nuclear enzyme responsible for stress response) gene expression under A toxicity was analyzed. Experiments were carried out using pheochromocytoma cells (PC-12) transfected with: an empty vector (used as a control), human wild-type APP gene (APPwt) and Swedish mutated (K670M/N671L) APP gene (APPsw). Our results indicated that C2-ceramide significantly decreased the viability of the APPwt, APPsw as well as empty vector-transfected PC12 cells. It was observed that C2-ceramide had no significant effect on the mRNA level of - and -secretase in APPwt and APPsw cells. However, it significantly decreased transcription of -secretase in control cells. Results also showed a significant increase in Psen1 (crucial subunit of -secretase) gene expression in APPsw cells after incubation with C2-ceramide. We observed that SEW 2871 significantly upregulated the mRNA level of -secretase in control-empty vector-transfected cells subjected to C2-ceramide toxicity. The same tendency, though insignificant, was observed in APPwt and APPsw cells. Moreover, SEW 2871 enhanced the mRNA level of -secretase and Psen1 in APPsw cells after C2-ceramide treatment. Additionally, SEW 2871 significantly upregulated a gene expression of Sirt1 in APPwt and also APPsw cells subjected to C2-ceramide toxicity. Furthermore, it was observed that SEW 2871 significantly enhanced the viability of all investigated cells' lines probably through its positive influence on Sirt1.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ceramidas/farmacología , Lisofosfolípidos/metabolismo , Oxadiazoles/farmacología , Esfingosina/análogos & derivados , Tiofenos/farmacología , Animales , Ceramidas/metabolismo , Humanos , Modelos Teóricos , Neuronas/metabolismo , Oxadiazoles/metabolismo , Células PC12 , Ratas , Receptores de Lisoesfingolípidos/agonistas , Esfingosina/metabolismo , Tiofenos/metabolismo , Transcripción Genética/efectos de los fármacos
6.
Biochim Biophys Acta Mol Cell Res ; 1865(2): 281-288, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29128369

RESUMEN

Alzheimer's disease (AD) is characterized by the release of amyloid beta peptides (Aß) in the form of monomers/oligomers which may lead to oxidative stress, mitochondria dysfunction, synaptic loss, neuroinflammation and, in consequence, to overactivation of poly(ADP-ribose) polymerase-1 (PARP-1). However, Aß peptides are also released in the brain ischemia, traumatic injury and in inflammatory response. PARP-1 is suggested to be a promising target in therapy of neurodegenerative disorders. We investigated the impact of PARP-1 inhibition on transcription of mitochondria-related genes in PC12 cells. Moreover, the effect of PARP-1 inhibitor (PJ34) on cells subjected to Aß oligomers (AßO) - evoked stress was analyzed. Our data demonstrated that inhibition of PARP-1 in PC12 cells enhanced the transcription of genes for antioxidative enzymes (Sod1, Gpx1, Gpx4), activated genes regulating mitochondrial fission/fusion (Mfn1, Mfn2, Dnm1l, Opa1, Fis1), subunits of ETC complexes (mt-Nd1, Sdha, mt-Cytb) and modulated expression of several TFs, enhanced Foxo1 and decreased Nrf1, Stat6, Nfkb1. AßO elevated free radicals concentration, decreased mitochondria membrane potential (MMP) and cell viability after 24h. Gene transcription was not affected by AßO after 24h, but was significantly downregulated after 96h. In AßO stress, PJ34 exerted stimulatory effect on expression of several genes (Gpx1, Gpx4, Opa1, Mfn2, Fis1 and Sdha), decreased transcription of numerous TFs (Nrf1, Tfam, Stat3, Stat6, Trp53, Nfkb1) and prevented oxidative stress. Our results indicated that PARP-1 inhibition significantly enhanced transcription of genes involved in antioxidative defense and in regulation of mitochondria function, but was not able to ameliorate cells viability affected by Aß.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Regulación de la Expresión Génica , Mitocondrias/metabolismo , Proteínas Mitocondriales/biosíntesis , Estrés Oxidativo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/genética , Animales , Mitocondrias/genética , Proteínas Mitocondriales/genética , Células PC12 , Poli(ADP-Ribosa) Polimerasa-1/genética , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...