Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JBMR Plus ; 7(11): e10832, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38025042

RESUMEN

Clinical studies indicate that microvascular disease (MVD) affects bone microstructure and decreases bone strength in type 2 diabetes mellitus (T2D). Osteocytes are housed in small voids within the bone matrix and lacunae and act as sensors of mechanical forces in bone. These cells regulate osteoclastic bone resorption and osteoblastic bone formation as well as osteocytic perilacunar remodeling. We hypothesized that MVD changes morphometric osteocyte lacunar parameters in individuals with T2D. We collected iliac crest bone biopsies from 35 individuals (10 female, 25 male) with T2D with MVD (15%) or without MVD (21%) with a median age of 67 years (interquartile range [IQR] 62-72 years). The participants were included based on c-peptide levels >700 pmol L-1, absence of anti-GAD65 antibodies, and glycated hemoglobin (HbA1c) levels between 40 and 82 mmol mol-1 or 5.8% and 9.7%, respectively. We assessed osteocyte lacunar morphometric parameters in trabecular and cortical bone regions using micro-computed tomography (micro-CT) at a nominal resolution of 1.2 µm voxel size. The cortical osteocyte lacunar volume (Lc.V) was 7.7% larger (p = 0.05) and more spherical (Lc.Sr, p < 0.01) in the T2D + MVD group. Using linear regression, we found that lacunar density (Lc.N/BV) in trabecular but not cortical bone was associated with HbA1c (p < 0.05, R 2 = 0.067) independently of MVD. Furthermore, Lc.V was larger and Lc.Sr higher in the center than in the periphery of the trabecular and cortical bone regions (p < 0.05). In conclusion, these data imply that MVD may impair skeletal integrity, possibly contributing to increased skeletal fragility in T2D complicated by MVD. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

2.
Acta Biomater ; 162: 254-265, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36878337

RESUMEN

Bone fragility is a profound complication of type 1 diabetes mellitus (T1DM), increasing patient morbidity. Within the mineralized bone matrix, osteocytes build a mechanosensitive network that orchestrates bone remodeling; thus, osteocyte viability is crucial for maintaining bone homeostasis. In human cortical bone specimens from individuals with T1DM, we found signs of accelerated osteocyte apoptosis and local mineralization of osteocyte lacunae (micropetrosis) compared with samples from age-matched controls. Such morphological changes were seen in the relatively young osteonal bone matrix on the periosteal side, and micropetrosis coincided with microdamage accumulation, implying that T1DM drives local skeletal aging and thereby impairs the biomechanical competence of the bone tissue. The consequent dysfunction of the osteocyte network hampers bone remodeling and decreases bone repair mechanisms, potentially contributing to the enhanced fracture risk seen in individuals with T1DM. STATEMENT OF SIGNIFICANCE: Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease that causes hyperglycemia. Increased bone fragility is one of the complications associated with T1DM. Our latest study on T1DM-affected human cortical bone identified the viability of osteocytes, the primary bone cells, as a potentially critical factor in T1DM-bone disease. We linked T1DM with increased osteocyte apoptosis and local accumulation of mineralized lacunar spaces and microdamage. Such structural changes in bone tissue suggest that T1DM speeds up the adverse effects of aging, leading to the premature death of osteocytes and potentially contributing to diabetes-related bone fragility.


Asunto(s)
Diabetes Mellitus Tipo 1 , Osteocitos , Humanos , Envejecimiento , Huesos , Apoptosis
3.
Calcif Tissue Int ; 112(3): 308-319, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36414794

RESUMEN

Hypophosphatasia (HPP) is an inherited, systemic disorder, caused by loss-of-function variants of the ALPL gene encoding the enzyme tissue non-specific alkaline phosphatase (TNSALP). HPP is characterized by low serum TNSALP concentrations associated with defective bone mineralization and increased fracture risk. Dental manifestations have been reported as the exclusive feature (odontohypophosphatasia) and in combination with skeletal complications. Enzyme replacement therapy (asfotase alfa) has been shown to improve respiratory insufficiency and skeletal complications in HPP patients, while its effects on dental status have been understudied to date. In this study, quantitative backscattered electron imaging (qBEI) and histological analysis were performed on teeth from two patients with infantile HPP before and during asfotase alfa treatment and compared to matched healthy control teeth. qBEI and histological methods revealed varying mineralization patterns in cementum and dentin with lower mineralization in HPP. Furthermore, a significantly higher repair cementum thickness was observed in HPP compared to control teeth. Comparison before and during treatment showed minor improvements in mineralization and histological parameters in the patient when normalized to matched control teeth. HPP induces heterogeneous effects on mineralization and morphology of the dental status. Short treatment with asfotase alfa slightly affects mineralization in cementum and dentin. Despite HPP being a rare disease, its mild form occurs at higher prevalence. This study is of high clinical relevance as it expands our knowledge of HPP and dental involvement. Furthermore, it contributes to the understanding of dental tissue treatment, which has hardly been studied so far.


Asunto(s)
Calcinosis , Hipofosfatasia , Desmineralización Dental , Humanos , Hipofosfatasia/complicaciones , Fosfatasa Alcalina/genética , Calcificación Fisiológica , Calcinosis/complicaciones , Desmineralización Dental/complicaciones , Desmineralización Dental/tratamiento farmacológico
4.
J Bone Miner Res ; 38(1): 131-143, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36331133

RESUMEN

Hyperthyroidism causes secondary osteoporosis through favoring bone resorption over bone formation, leading to bone loss with elevated bone fragility. Osteocytes that reside within lacunae inside the mineralized bone matrix orchestrate the process of bone remodeling and can themselves actively resorb bone upon certain stimuli. Nevertheless, the interaction between thyroid hormones and osteocytes and the impact of hyperthyroidism on osteocyte cell function are still unknown. In a preliminary study, we analyzed bones from male C57BL/6 mice with drug-induced hyperthyroidism, which led to mild osteocytic osteolysis with 1.14-fold larger osteocyte lacunae and by 108.33% higher tartrate-resistant acid phosphatase (TRAP) activity in osteocytes of hyperthyroid mice compared to euthyroid mice. To test whether hyperthyroidism-induced bone changes are reversible, we rendered male mice hyperthyroid by adding levothyroxine into their drinking water for 4 weeks, followed by a weaning period of 4 weeks with access to normal drinking water. Hyperthyroid mice displayed cortical and trabecular bone loss due to high bone turnover, which recovered with weaning. Although canalicular number and osteocyte lacunar area were similar in euthyroid, hyperthyroid and weaned mice, the number of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL)-positive osteocytes was 100% lower in the weaning group compared to euthyroid mice and the osteocytic TRAP activity was eightfold higher in hyperthyroid animals. The latter, along with a 3.75% lower average mineralization around the osteocyte lacunae in trabecular bone, suggests osteocytic osteolysis activity that, however, did not result in significantly enlarged osteocyte lacunae. In conclusion, we show a recovery of bone microarchitecture and turnover after reversal of hyperthyroidism to a euthyroid state. In contrast, osteocytic osteolysis was initiated in hyperthyroidism, but its effects were not reversed after 4 weeks of weaning. Due to the vast number of osteocytes in bone, we speculate that even minor individual cell functions might contribute to altered bone quality and mineral homeostasis in the setting of hyperthyroidism-induced bone disease. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Agua Potable , Hipertiroidismo , Osteólisis , Ratones , Masculino , Animales , Osteocitos , Fosfatasa Ácida Tartratorresistente , Ratones Endogámicos C57BL , Minerales , Hipertiroidismo/complicaciones
5.
Cells ; 10(11)2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34831244

RESUMEN

The bone matrix is constantly remodeled by the coordinated activities of bone-forming osteoblasts and bone-resorbing osteoclasts. Whereas type I collagen is the most abundant bone matrix protein, there are several other proteins present, some of them specifically produced by osteoblasts. In a genome-wide expression screening for osteoblast differentiation markers we have previously identified two collagen-encoding genes with unknown function in bone remodeling. Here we show that one of them, Col22a1, is predominantly expressed in bone, cultured osteoblasts, but not in osteoclasts. Based on this specific expression pattern we generated a Col22a1-deficient mouse model, which was analyzed for skeletal defects by µCT, undecalcified histology and bone-specific histomorphometry. We observed that Col22a1-deficient mice display trabecular osteopenia, accompanied by significantly increased osteoclast numbers per bone surface. In contrast, cortical bone parameters, osteoblastogenesis or bone formation were unaffected by the absence of Col22a1. Likewise, primary osteoblasts from Col22a1-deficient mice did not display a cell-autonomous defect, and they did not show altered expression of Rankl or Opg, two key regulators of osteoclastogenesis. Taken together, we provide the first evidence for a physiological function of Col22a1 in bone remodeling, although the molecular mechanisms explaining the indirect influence of Col22a1 deficiency on osteoclasts remain to be identified.


Asunto(s)
Hueso Esponjoso/anatomía & histología , Colágeno/deficiencia , Animales , Enfermedades Óseas Metabólicas/patología , Recuento de Células , Colágeno/metabolismo , Fémur/diagnóstico por imagen , Fémur/patología , Ratones Endogámicos C57BL , Modelos Animales , Tamaño de los Órganos , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogénesis , Fenotipo , Cuerpo Vertebral , Microtomografía por Rayos X
6.
Clin Oral Investig ; 25(7): 4377-4400, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33694028

RESUMEN

OBJECTIVES: With the higher risk of dental implant failure with type 2 diabetes mellitus (T2DM), there is a need to characterize the jaw bones in those individuals. The aim of this post mortem study was to compare jaw bone quality of individuals with T2DM to healthy controls. MATERIAL AND METHODS: Bone cores from the edentulous lower first molar region and the region of mandibular angle were collected from male individuals with T2DM (n = 10, 70.6 ± 4.5 years) and healthy controls (n = 11, 71.5 ± 3.8 years) during autopsy. Within the T2DM, a subgroup treated with oral antidiabetics (OAD) and one on insulin were identified. Bone quality assessment encompassed evaluation of bone microstructure, matrix composition, and cellular activity, using microcomputed tomography (micro-CT), quantitative backscattered electron imaging (qBEI), Raman spectroscopy, and bone histomorphometry. RESULTS: In the mandibular angle, T2DM showed 51% lower porosity of the lingual cortex (p = 0.004) and 21% higher trabecular thickness (p = 0.008) compared to control. More highly mineralized bone packets were found in the buccal cortex of the mandibular angle in insulin-treated compared to OAD-treated T2DM group (p = 0.034). In the molar region, we found higher heterogeneity of trabecular calcium content in T2DM insulin compared to controls (p = 0.015) and T2DM OAD (p = 0.019). T2DM was associated with lower osteocyte lacunar size in the trabecular bone of the molar region (vs. control p = 0.03). CONCLUSIONS: Alterations in microstructure, mineralization, and osteocyte morphology were determined in jaw bone of individuals with T2DM compared to controls. CLINICAL RELEVANCE: Future studies will have to verify if the mild changes determined in this study will translate to potential contraindications for dental implant placements.


Asunto(s)
Diabetes Mellitus Tipo 2 , Autopsia , Densidad Ósea , Humanos , Masculino , Mandíbula/diagnóstico por imagen , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...