Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Cancer Med ; 13(16): e70100, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39149873

RESUMEN

OBJECTIVES: Glioblastoma (GBM) is the most aggressive of intracranial gliomas. Despite the maximal treatment intervention, the median survival rate is still about 14-16 months. Nuclear receptor-binding protein 1 (NRBP1) has a potential growth-promoting role on biology function of cells. In this study, we investigated whether NRBP1 promotes GBM malignant phenotypes and the potential mechanisms. METHODS: The correlation between NRBP1 and glioma grade, prognosis in TCGA/CGGA databases and our clinical data were analyzed. Next, we conducted knockout and overexpression of NRBP1 on GBM cells to verify that NRBP1 promoted cell proliferation, invasion, and migration in vitro and in vivo. Finally, we detected the impact of NRBP1 on PI3K/Akt signaling pathway and EMT. RESULTS: There was a correlation between elevated NRBP1 expression and advanced stage glioma, as well as decreased overall and disease-free survival. The suppression of proliferation, invasion, and migration of tumor cells was observed upon NRBP1 knockout, and in vitro studies also demonstrated the induction of apoptotic cell death. Whereas, its overexpression is associated with high multiplication rate, migration, invasion, and apoptotic escape. GO enrichment and KEGG analysis revealed that NRBP1 regulated differentially expressed gene clusters are involved in PI3K/Akt signaling pathway, as well as EMT mediated by this pathway. Moreover, the effects of NRBP1 knockdown and overexpression on GBM were mitigated by MK-2206 and SC79, both of which respectively function as an inhibitor and an activator of the PI3K/Akt signaling pathway. Similarly, the suppression of NRBP1 led to a decrease in tumor growth, whereas its overexpression promoted tumor growth in a mouse model. CONCLUSIONS: This study shows that NRBP1 promotes malignant phenotypes in GBM by activating PI3K/Akt pathway. Hence, it can function as both a predictive indicator and a new target for therapies in GBM treatment.


Asunto(s)
Neoplasias Encefálicas , Movimiento Celular , Proliferación Celular , Glioblastoma , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Animales , Femenino , Humanos , Masculino , Ratones , Apoptosis , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioblastoma/patología , Glioblastoma/metabolismo , Ratones Desnudos , Fenotipo , Fosfatidilinositol 3-Quinasas/metabolismo , Pronóstico , Proteínas Proto-Oncogénicas c-akt/metabolismo
2.
Environ Sci Technol ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39145972

RESUMEN

This study delves into the unexplored distribution and accumulation of chlorinated paraffins (CPs), pervasive industrial contaminants used as flame retardants and plasticizers, within the hadal trenches, some of Earth's most isolated marine ecosystems. Analysis of sediments from the Mussau (MS) and Mariana trench (MT) reveals notably high total CP concentrations (∑SCCPs + ∑MCCPs) of 10,963 and 14,554 ng g-1 dw, respectively, surpassing those in a reference site in the western Pacific abyssal plain (8533 ng g-1 dw). In contrast, the New Britain Trench (NBT) exhibits the lowest concentrations (2213-5880 ng g-1 dw), where CP distribution correlates with clay content, δ13C and δ15N values, but little with total organic carbon and depth. Additionally, amphipods from these trenches display varying CP levels, with MS amphipods reaching concerning concentrations (8681-16,138 ng g-1 lw), while amphipods in the MT-1 site show the lowest (4414-5010 ng g-1 lw). These bioaccumulation trends appear to be primarily influenced by feeding behaviors (δ13C) and trophic levels (δ15N). Utilizing biota-sediment accumulation factor values and principal component analysis, we discern that CPs in sediment may come from surface-derived particulate organic matters, while those in amphipods may come from the above carrion. Our findings elucidate the profound impacts of the emerging pollutants on the Earth's least explored marine ecosystems.

3.
Cancer Lett ; 599: 217152, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094825

RESUMEN

Monoclonal antibodies targeting immune checkpoints have been widely applied in gastrointestinal cancer immunotherapy. However, systemic administration of various monoclonal antibodies does not often result in sustained effects in reversing the immunosuppressive tumor microenvironment (TME), which may be due to the spatiotemporal dynamic changes of immune checkpoints. Herein, we reported a novel immune checkpoint reprogramming strategy for gastrointestinal cancer immunotherapy. It was achieved by the sequential delivery of siPD-L1 (siRNA for programmed cell death ligand 1) and pOX40L (plasmid for OX40 ligand), which were complexed with two cationic polymer brush-grafted carbon nanotubes (dense short (DS) and dense long (DL)) designed based on the structural characteristics of nucleic acids and brush architectures. Upon administrating DL/pOX40L for the first three dosages, then followed by DS/siPD-L1 for the next three dosages to the TME, it upregulated the stimulatory checkpoint OX40L on dendritic cells (DCs) and downregulated inhibitory checkpoint PD-L1 on tumor cells and DCs in a sequential reprogramming manner. Compared with other combination treatments, this sequential strategy drastically boosted the DCs maturation, and CD8+ cytotoxic T lymphocytes infiltration in tumor site. Furthermore, it could augment the local antitumor response and improve the T cell infiltration in tumor-draining lymph nodes to reverse the peripheral immunosuppression. Our study demonstrated that sequential nucleic acid delivery strategy via personalized nanoplatforms effectively reversed the immunosuppression status in both tumor microenvironment and peripheral immune landscape, which significantly enhanced the systemic antitumor immune responses and established an optimal immunotherapy strategy against gastrointestinal cancer.

4.
J Hazard Mater ; 478: 135435, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39151354

RESUMEN

Selective and prior extraction of 99TcO4- ahead of uranium and plutonium separation is a beneficial strategy for the modern nuclear fuel cycle. Herein, a novel DGA-grafting pyridine ligand BisDODGA-DAPy (L1) was tailored for the efficient separation of TcO4- from simulated spent nuclear fuel based on the selectivity of pyridine and synergistic effect of diglycolamide (DGA) group. Compared to the ligands BisDOSCA-DAPy (L2) and BisDODGA-MPDA (L3) with similar structure, BisDODGA-DAPy (L1) demonstrated the better separation performance including good extraction efficiency, reusability, and high loading capacity for TcO4- under high acidic medium. The interactions of the ligands with Tc(VII)/Re(VII) have been investigated in detail using FT-IR, 1H NMR titration, UV-Vis spectrophotometric titration, ESI-HRMS and DFT simulations. The extraction mechanism affected by the protonation of ligand was elucidated under different acidity. BisDODGA-DAPy (L1) demonstrated the ultra-selective extraction ability for TcO4- from simulated spent nuclear fuel. The maximum SFTc/U and SFTc/Pu values were up to 1.29 × 104 and 5.08 × 103, respectively. In the presence of 9 × 104-fold excess of NO3-, the extraction of TcO4- was almost unaffected. Moreover, the good radiolytic stability further highlights the promising potential of this ligand for 99Tc separation. DFT calculation revealed the dominant role of DAPy and DODGA in TcO4- extraction, providing the theoretical evidence for BisDODGA-DAPy (L1) to selectively bind TcO4- over NO3-.

5.
Stem Cell Reports ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39151429

RESUMEN

The homeostasis of human pluripotent stem cells (hPSCs) requires the signaling balance of extracellular factors. Exogenous regulators from cell culture medium have been widely reported, but little attention has been paid to the autocrine factor from hPSCs themselves. In this report, we demonstrate that extracellular signal-related kinase 5 (ERK5) regulates endogenous autocrine factors essential for pluripotency and differentiation. ERK5 inhibition leads to erroneous cell fate specification in all lineages even under lineage-specific induction. hPSCs can self-renew under ERK5 inhibition in the presence of fibroblast growth factor 2 (FGF2) and transforming growth factor ß (TGF-ß), although NANOG expression is partially suppressed. Further analysis demonstrates that ERK5 promotes the expression of autocrine factors such as NODAL, FGF8, and WNT3. The addition of NODAL protein rescues NANOG expression and differentiation phenotypes under ERK5 inhibition. We demonstrate that constitutively active ERK5 pathway allows self-renewal even without essential growth factors FGF2 and TGF-ß. This study highlights the essential contribution of autocrine pathways to proper maintenance and differentiation.

6.
Artículo en Inglés | MEDLINE | ID: mdl-39107672

RESUMEN

Transdermal drug delivery provides therapeutic benefits over enteric or injection delivery because its transdermal routes provide more consistent concentrations of drug and avoid issues of drugs affecting kidneys and liver functions. Many technologies have been evaluated to enhance drug delivery through the relatively impervious epidermal layer of the skin. However, precise delivery of large hydrophilic molecules is still a great challenge even though microneedles or other energized (such as electrical, thermal, or ultrasonic) patches have been used, which are often difficult to be integrated into small wearable devices. This study developed a flexible surface acoustic wave (SAW) patch platform to facilitate transdermal delivery of macromolecules with fluorescein isothiocyanates up to 2000 kDa. Two surrogates of human skin were used to evaluate SAW based energized devices, i.e., delivering dextran through agarose gels and across stratum corneum of pig skin into the epidermis. Results showed that the 2000 kDa fluorescent molecules have been delivered up to 1.1 mm in agarose gel, and the fluorescent molecules from 4 to 2000 kDa have been delivered up to 100 µm and 25 µm in porcine skin tissue, respectively. Mechanical agitation, localised streaming, and acousto-thermal effect generated on the skin surface were identified as the main mechanisms for promoting drug transdermal transportation, although micro/nanoscale acoustic cavitation induced by SAWs could also have its contribution. SAW enhanced transdermal drug delivery is dependent on the combined effects of wave frequency and intensity, duration of applied acoustic waves, temperature, and drug molecules molecular weights.

7.
Adv Mater ; : e2405860, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39108194

RESUMEN

Narrow-bandgap Sn-Pb alloying perovskites showcased great potential in constructing multiple-junction perovskite solar cells (PSCs) with efficiencies approaching or exceeding the Shockley-Queisser limit. However, the uncontrollable surface metal abundance (Sn2+ and Pb2+ ions) hinders their efficiency and versatility in different device structures. Additionally, the undesired Pb distribution mainly at the buried interface accelerates the Pb leakage when devices are damaged. In this work, a novel strategy is presented to modulate crystallization kinetics and surface metal abundance of Sn-Pb perovskites using a cobweb-like quadrangular macrocyclic porphyrin material, which features a molecular size compatible with the perovskite lattice and robustly coordinates with Pb2+ ions, thus immobilizing them and increasing surface Pb abundance by 61%. This modulation reduces toxic Pb leakage rates by 24-fold, with only ∼23 ppb Pb in water after severely damaged PSCs are immersed in water for 150 h.This strategy can also enhance chemical homogeneity, reduce trap density, release tensile strain and optimize carrier dynamics of Sn-Pb perovskites and relevant devices. Encouragingly, the power conversion efficiency (PCEs) of 23.28% for single-junction, full-stack devices and 21.34% for hole transport layer-free Sn-Pb PSCs are achieved.Notably, the related monolithic all-perovskite tandem solar cell also achieves a PCE of 27.03% with outstanding photostability.

9.
Orthop Surg ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39135320

RESUMEN

OBJECTIVE: Rapid and effective reduction is difficult for minimally invasive plate osteosynthesis (MIPO) surgery. This study aims to introduce a bidirectional rapid reductor (BRR) designed to assist in the reduction during MIPO surgery for proximal humeral fractures (PHFs). METHODS: This retrospective study was conducted between June 2021 and February 2022 in the Third Hospital of Hebei Medical University, involving patients diagnosed with PHFs. A detailed technical approach of BRR in MIPO surgery was described, and the patients' outcomes based on postoperative radiographic results including x-ray postoperative follow-up, and clinical outcome parameters including visual analogue scale (VAS) and constant-Murley score at last follow-up were reported. RESULTS: A total of 12 patients were included in this study, comprising three males and nine females, with an average age of 67.58 years. The mean operative time was 70.92 min (range 63-80 min). The mean blood loss was 102.27 mL (range 50-300 mL). The mean VAS and constant-Murley scores at final follow-up were 0.33 and 88, respectively. All patients had their fractures healed without secondary displacement at last follow-up. One patient experienced shoulder stiffness post-operation. There were no adverse events or complications following the use of this technique, such as acromion fracture, nerve or blood vessel injury. CONCLUSION: The BRR can assist MIPO for good reduction of PHFs. However, the efficacy should be validated with a large-sample randomized controlled trial and longer follow-up.

10.
Am J Occup Ther ; 78(5)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39141779

RESUMEN

IMPORTANCE: Although the Assessment of Motor and Process Skills (AMPS) is an excellent tool for evaluating the functional performance of instrumental activities of daily living (IADLs), a limited number of studies have used the AMPS for decisions regarding the IADL of fitness to drive and community mobility. OBJECTIVE: To determine the specificity and sensitivity of the AMPS as a tool for determining a person's fitness to drive. DESIGN: Cross-sectional observational design. SETTING: Three driving rehabilitation programs in three states. PARTICIPANTS: Participants were 388 community-living adults (M age = 68.74 yr, SD = 11.53); 196 adults were recruited before completing a comprehensive driving evaluation, and 192 were recruited in two other studies of older drivers. OUTCOME AND MEASURES: AMPS and results of comprehensive driving evaluation or on-road assessment. RESULTS: Using a logistical regression, AMPS Motor and Process Skills scores yielded a sensitivity of 84.6% and a specificity of 88.8%. The odds ratio of the AMPS Motor Skills score was .347; for the AMPS Process Skills score, it was .014. Using cross-validations, the model with AMPS Motor and Process scores produced a cross-validation area under the curve of .918, with sensitivity and specificity of 84.6% and 88.4%, respectively, and a probability greater than .334 was used for predicting a fail or drive-with-restriction evaluation. CONCLUSIONS AND RELEVANCE: The AMPS Motor and Process Skills scores revealed significant differences between those who failed or had driving restrictions and with those who passed the driving evaluation, which supported the AMPS as an effective tool for predicting fitness to drive. Plain-Language Summary: This study demonstrates how the Assessment of Motor and Process Skills (AMPS), as a top-down occupational therapy assessment tool, can be used to differentiate between medically at-risk drivers who are likely to pass a comprehensive driving evaluation and those who are likely to fail or need restrictions. AMPS will assist occupational therapy practitioners in determining who is most appropriate to receive driving rehabilitation services and/or when to refer a person for a comprehensive driving evaluation.


Asunto(s)
Actividades Cotidianas , Conducción de Automóvil , Destreza Motora , Humanos , Anciano , Estudios Transversales , Masculino , Femenino , Persona de Mediana Edad , Sensibilidad y Especificidad , Anciano de 80 o más Años
11.
Lab Chip ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39143844

RESUMEN

Formation of bacterial films on structural surfaces often leads to severe contamination of medical devices, hospital equipment, implant materials, etc., and antimicrobial resistance of microorganisms has indeed become a global health issue. Therefore, effective therapies for controlling infectious and pathogenic bacteria are urgently needed. Being a promising active method for this purpose, surface acoustic waves (SAWs) have merits such as nanoscale earthquake-like vibration/agitation/radiation, acoustic streaming induced circulations, and localised acoustic heating effect in liquids. However, only a few studies have explored controlling bacterial growth and inactivation behaviour using SAWs. In this study, we proposed utilising piezoelectric thin film-based SAW devices on a silicon substrate for controlling bacterial growth and inactivation with and without using ZnO micro/nanostructures. Effects of SAW powers on bacterial growth for two types of bacteria, i.e., E. coli and S. aureus, were evaluated. Varied concentrations of ZnO tetrapods were also added into the bacterial culture to study their effects and the combined antimicrobial effects along with SAW agitation. Our results showed that when the SAW power was below a threshold (e.g., about 2.55 W in this study), the bacterial growth was apparently enhanced, whereas the further increase of SAW power to a high power caused inactivation of bacteria. Combination of thin film SAWs with ZnO tetrapods led to significantly decreased growth or inactivation for both E. coli and S. aureus, revealing their effectiveness for antimicrobial treatment. Mechanisms and effects of SAW interactions with bacterial solutions and ZnO tetrapods have been systematically discussed.

12.
J Transl Med ; 22(1): 723, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103875

RESUMEN

BACKGROUND: Inadequate nerve regeneration and an inhibitory local microenvironment are major obstacles to the repair of spinal cord injury (SCI). The activation and differentiation fate regulation of endogenous neural stem cells (NSCs) represent one of the most promising repair approaches. Metformin has been extensively studied for its antioxidative, anti-inflammatory, anti-aging, and autophagy-regulating properties in central nervous system diseases. However, the effects of metformin on endogenous NSCs remains to be elucidated. METHODS: The proliferation and differentiation abilities of NSCs were evaluated using CCK-8 assay, EdU/Ki67 staining and immunofluorescence staining. Changes in the expression of key proteins related to ferroptosis in NSCs were detected using Western Blot and immunofluorescence staining. The levels of reactive oxygen species, glutathione and tissue iron were measured using corresponding assay kits. Changes in mitochondrial morphology and membrane potential were observed using transmission electron microscopy and JC-1 fluorescence probe. Locomotor function recovery after SCI in rats was assessed through BBB score, LSS score, CatWalk gait analysis, and electrophysiological testing. The expression of the AMPK pathway was examined using Western Blot. RESULTS: Metformin promoted the proliferation and neuronal differentiation of NSCs both in vitro and in vivo. Furthermore, a ferroptosis model of NSCs using erastin treatment was established in vitro, and metformin treatment could reverse the changes in the expression of key ferroptosis-related proteins, increase glutathione synthesis, reduce reactive oxygen species production and improve mitochondrial membrane potential and morphology. Moreover, metformin administration improved locomotor function recovery and histological outcomes following SCI in rats. Notably, all the above beneficial effects of metformin were completely abolished upon addition of compound C, a specific inhibitor of AMP-activated protein kinase (AMPK). CONCLUSION: Metformin, driven by canonical AMPK-dependent regulation, promotes proliferation and neuronal differentiation of endogenous NSCs while inhibiting ferroptosis, thereby facilitating recovery of locomotor function following SCI. Our study further elucidates the protective mechanism of metformin in SCI, providing new mechanistic insights for its candidacy as a therapeutic agent for SCI.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Diferenciación Celular , Proliferación Celular , Ferroptosis , Metformina , Células-Madre Neurales , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal , Metformina/farmacología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/metabolismo , Animales , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Proliferación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Transducción de Señal/efectos de los fármacos , Ratas , Especies Reactivas de Oxígeno/metabolismo , Recuperación de la Función/efectos de los fármacos
13.
Ann Surg Oncol ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112735

RESUMEN

PURPOSE: This study was designed to assess the advantages of radical antegrade modular pancreatosplenectomy (RAMPS) over standard retrograde pancreatosplenectomy (SPRS) in terms of disease-free survival (DFS) by comparing clinical outcomes. METHODS: Clinical data from 154 patients who underwent distal pancreatectomy at Tianjin Medical University Cancer Institute and Hospital between January 2015 and August 2018 were collected. We compared the preoperative conditions, postoperative complications, and survival outcomes of patients who underwent two different surgical procedures. By creating a LASSO-Cox model, we determined the parameters affecting DFS and the risk ratios of the two surgical procedures on DFS. RESULTS: The R0 resection rate (85.23% vs. 68.18%, P = 0.003), negative posterior margin rate (96.59% vs. 75.76%, P < 0.001), and tumor bed recurrence rate (15.29% vs. 40.00%, P = 0.001) significantly differed between the RAMPS and SPRS groups. The 1-, 3-, and 5-year survival and DFS rates of the RAMPS group were significantly better than those of the SPRS group (P < 0.05). Disease-free survival analysis based on Kaplan-Meier curves revealed that RAMPS was superior to SPRS (P < 0.001). CONCLUSIONS: We recommend RAMPS as the preferred procedure for treating ductal adenocarcinoma of the pancreatic body and tail due to its enhanced lymph node repair capacity and visualization of posterior pancreatic sections, which can increase DFS in patients.

14.
Hepatol Int ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127853

RESUMEN

BACKGROUND: This study conducted molecular subtyping of biliary tract cancer patients based on 19 PANoptosis-related gene signatures. METHODS: Through consensus clustering, patients were categorized into two subtypes, A and B. By integrating multi-omics data and clinical information from different cohorts, we elucidated the association between different subtypes of biliary tract cancer and patient prognosis, which correlated with the immune infiltration characteristics of patients. RESULTS: LASSO regression analysis was performed on the 19 gene signatures, and we constructed and validated a 9-gene risk score prognostic model that accurately predicts the overall survival rate of different biliary tract cancer patients. Additionally, we developed a predictive nomogram demonstrating the clinical utility and robustness of our model. Further analysis of the risk score-based immune landscape highlighted potential associations with immune cell infiltration, chemotherapy, and immune therapy response. CONCLUSION: Our study provides valuable insights into personalized treatment strategies for biliary tract cancer, which are crucial for improving patient prognosis and guiding treatment decisions in clinical practice.

15.
Curr Atheroscler Rep ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133247

RESUMEN

PURPOSE OF THE REVIEW: Macrophage accumulation and activation function as hallmarks of atherosclerosis and have complex and intricate dynamics throughout all components and stages of atherosclerotic plaques. In this review, we focus on the regulatory roles and underlying mechanisms of macrophage phenotypes and metabolism in atherosclerosis. We highlight the diverse range of macrophage phenotypes present in atherosclerosis and their potential roles in progression and regression of atherosclerotic plaque. Furthermore, we discuss the challenges and opportunities in developing therapeutic strategies for preventing and treating atherosclerotic cardiovascular disease. RECENT FINDINGS: Dysregulation of macrophage polarization between the proinflammatory M1 and anti-inflammatory M2 phenotypealters the immuno-inflammatory response during atherosclerosis progression, leading to plaque initiation, growth, and ultimately rupture. Altered metabolism of macrophage is a key feature for their function and the subsequent progression of atherosclerotic cardiovascular disease. The immunometabolism of macrophage has been implicated to macrophage activation and metabolic rewiring of macrophages within atherosclerotic lesions, thereby shifting altered macrophage immune-effector and tissue-reparative function. Targeting macrophage phenotypes and metabolism are potential therapeutic strategies in the prevention and treatment of atherosclerosis and atherosclerotic cardiovascular diseases. Understanding the precise function and metabolism of specific macrophage subsets and their contributions to the composition and growth of atherosclerotic plaques could reveal novel strategies to delay or halt development of atherosclerotic cardiovascular diseases and their associated pathophysiological consequences. Identifying biological stimuli capable of modulating macrophage phenotypes and metabolism may lead to the development of innovative therapeutic approaches for treating patients with atherosclerosis and coronary artery diseases.

16.
Exp Ther Med ; 28(2): 331, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38979022

RESUMEN

The present study aimed to investigate the therapeutic effects and mechanisms of Yishen Jiangzhuo decoction (YSJZD) in a mouse model of cisplatin-induced acute kidney injury (AKI). The mice were divided into the NC, cisplatin and cisplatin + YSJZD groups. A concentration-dependent effect of YSJZD on cisplatin-induced AKI was observed and the optimal concentration for intervention was calculated. Changes in blood urea nitrogen and serum creatinine levels combined with hematoxylin and eosin and periodic acid-Schiff staining and transmission electron microscopy observations indicated that YSJZD enhanced renal function, reduced pathological injury and protected renal tubular epithelial cells in cisplatin-induced AKI mice. The results of the transcriptomic and enrichment analyses showed that the mechanisms of YSJZD may be associated with inflammation, oxidation, apoptosis and the TNF signal pathway. Immunofluorescence, oxidative stress index, terminal deoxynucleotidyl transferase dUTP nick end labeling assay and western blotting revealed that YSJZD downregulated apoptosis in the renal tissues of AKI mice and further decreased the expression levels of p-p65, p-p38 MAPK, TNF-α, cleaved-caspase-3 and malondialdehyde, while increasing the levels of NAD-dependent protein deacetylase sirtuin-3, glutathione and superoxide dismutase. Overall, the results showed that YSJZD could effectively abrogate cisplatin-induced AKI in mice through mechanisms primarily related to its anti-inflammatory, antioxidative and antiapoptotic effects by inhibited the TNF signal pathway. YSJZD warrants further investigation as a clinical empirical prescription.

17.
Nat Commun ; 15(1): 5987, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013913

RESUMEN

Ethylene regulates plant growth, development, and stress adaptation. However, the early signaling events following ethylene perception, particularly in the regulation of ethylene receptor/CTRs (CONSTITUTIVE TRIPLE RESPONSE) complex, remains less understood. Here, utilizing the rapid phospho-shift of rice OsCTR2 in response to ethylene as a sensitive readout for signal activation, we revealed that MHZ3, previously identified as a stabilizer of ETHYLENE INSENSITIVE 2 (OsEIN2), is crucial for maintaining OsCTR2 phosphorylation. Genetically, both functional MHZ3 and ethylene receptors prove essential for OsCTR2 phosphorylation. MHZ3 physically interacts with both subfamily I and II ethylene receptors, e.g., OsERS2 and OsETR2 respectively, stabilizing their association with OsCTR2 and thereby maintaining OsCTR2 activity. Ethylene treatment disrupts the interactions within the protein complex MHZ3/receptors/OsCTR2, reducing OsCTR2 phosphorylation and initiating downstream signaling. Our study unveils the dual role of MHZ3 in fine-tuning ethylene signaling activation, providing insights into the initial stages of the ethylene signaling cascade.


Asunto(s)
Etilenos , Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Receptores de Superficie Celular , Transducción de Señal , Oryza/metabolismo , Oryza/genética , Etilenos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fosforilación , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/genética , Plantas Modificadas Genéticamente , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética
18.
Artículo en Inglés | MEDLINE | ID: mdl-39028940

RESUMEN

Myocardial ischemia-reperfusion (MIR)-induced arrhythmia remains a major cause of death in patients with cardiovascular diseases. The reduction of Cx43 has been known as a major inducer of arrhythmias after MIR, but the reason for the reduction of Cx43 remain largely unknown. This study aimed to find the key mechanism underlying the reduction of Cx43 after MIR and to screen out a herbal extract to attenuate arrhythmia after MIR. The differential expressed genes in peripheral blood mononuclear cell (PBMC) after MIR was analyzed using the data from several GEO datasets, followed by the identification in the PBMC and the serum of patients with myocardial infarction. Tumour necrosis factor superfamily protein 14 (TNFSF14) was increased in the the PBMC and the serum of patients, which might be associated to the injury after MIR. The toxic effects of TNFSF14 on cardiomyocytes was investigated in vitro. Valtrate was screened out from several herbal extracts. Its protection against TNFSF14-induced injury was evaluated in cardiomyocytes and animal models with MIR. Recombinant TNFSF14 protein not only suppressed the viability of cardiomyocytes, but also decreased Cx43 by stimulating the receptor LTßR. LTßR induces the competitive binding of MAX to MGA rather than the transcriptional factor c-Myc, thereby suppressing c-Myc-mediated transcription of Cx43. Valtrate promoted the N-linked glycosylation modification of LTßR, which reversed TNFSF14-induced reduction of Cx43 and attenuated arrhythmia after MIR. In all, Valtrate suppresses TNFSF14-induced reduction of Cx43 thereby attenuating arrhythmia after MIR.

19.
Nat Med ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030266

RESUMEN

Primary diabetes care and diabetic retinopathy (DR) screening persist as major public health challenges due to a shortage of trained primary care physicians (PCPs), particularly in low-resource settings. Here, to bridge the gaps, we developed an integrated image-language system (DeepDR-LLM), combining a large language model (LLM module) and image-based deep learning (DeepDR-Transformer), to provide individualized diabetes management recommendations to PCPs. In a retrospective evaluation, the LLM module demonstrated comparable performance to PCPs and endocrinology residents when tested in English and outperformed PCPs and had comparable performance to endocrinology residents in Chinese. For identifying referable DR, the average PCP's accuracy was 81.0% unassisted and 92.3% assisted by DeepDR-Transformer. Furthermore, we performed a single-center real-world prospective study, deploying DeepDR-LLM. We compared diabetes management adherence of patients under the unassisted PCP arm (n = 397) with those under the PCP+DeepDR-LLM arm (n = 372). Patients with newly diagnosed diabetes in the PCP+DeepDR-LLM arm showed better self-management behaviors throughout follow-up (P < 0.05). For patients with referral DR, those in the PCP+DeepDR-LLM arm were more likely to adhere to DR referrals (P < 0.01). Additionally, DeepDR-LLM deployment improved the quality and empathy level of management recommendations. Given its multifaceted performance, DeepDR-LLM holds promise as a digital solution for enhancing primary diabetes care and DR screening.

20.
Photoacoustics ; 38: 100626, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38966593

RESUMEN

Photoacoustic spectroscopy (PAS) has been rapidly developed and applied to different detection scenarios. The acoustic pressure detection is an important part in the PAS system. In this paper, an ultrahigh sensitivity Fabry-Perot acoustic sensor with a T-shaped cantilever was proposed. To achieve the best acoustic pressure effect, the dimension of the cantilever structure was designed and optimized by finite element analysis using COMSOL Multiphysics. Simulation results showed that the sensitivity of such T-shaped cantilever was 1.5 times higher than that based on a rectangular cantilever, and the resonance frequency of T-shaped cantilever were able to modulate from 800 Hz to 1500 Hz by adjusting the multi-parameter characteristics. Experimental sensing results showed that the resonance frequency of T-shaped Fabry-Perot acoustic sensor was 1080 Hz, yielding a high sensitivity of 1.428 µm/Pa, with a signal-to-noise ratio (SNR) of 84.8 dB and a detectable pressure limit of 1.9 µPa/Hz1/2@1 kHz. We successfully used such acoustic sensor to measure acetylene (C2H2) concentration in the PAS. The sensitivity of PAS for C2H2 gas was 3.22 pm/ppm with a concentration range of 50 ppm ∼100 ppm, and the minimum detection limit was 24.91ppb.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA