Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Artículo en Inglés | MEDLINE | ID: mdl-30891445

RESUMEN

The question whether new genetic modification techniques (nGM) in plant development might result in non-negligible negative effects for the environment and/or health is significant for the discussion concerning their regulation. However, current knowledge to address this issue is limited for most nGMs, particularly for recently developed nGMs, like genome editing, and their newly emerging variations, e.g., base editing. This leads to uncertainties regarding the risk/safety-status of plants which are developed with a broad range of different nGMs, especially genome editing, and other nGMs such as cisgenesis, transgrafting, haploid induction or reverse breeding. A literature survey was conducted to identify plants developed by nGMs which are relevant for future agricultural use. Such nGM plants were analyzed for hazards associated either (i) with their developed traits and their use or (ii) with unintended changes resulting from the nGMs or other methods applied during breeding. Several traits are likely to become particularly relevant in the future for nGM plants, namely herbicide resistance (HR), resistance to different plant pathogens as well as modified composition, morphology, fitness (e.g., increased resistance to cold/frost, drought, or salinity) or modified reproductive characteristics. Some traits such as resistance to certain herbicides are already known from existing GM crops and their previous assessments identified issues of concern and/or risks, such as the development of herbicide resistant weeds. Other traits in nGM plants are novel; meaning they are not present in agricultural plants currently cultivated with a history of safe use, and their underlying physiological mechanisms are not yet sufficiently elucidated. Characteristics of some genome editing applications, e.g., the small extent of genomic sequence change and their higher targeting efficiency, i.e., precision, cannot be considered an indication of safety per se, especially in relation to novel traits created by such modifications. All nGMs considered here can result in unintended changes of different types and frequencies. However, the rapid development of nGM plants can compromise the detection and elimination of unintended effects. Thus, a case-specific premarket risk assessment should be conducted for nGM plants, including an appropriate molecular characterization to identify unintended changes and/or confirm the absence of unwanted transgenic sequences.

3.
Ann Bot ; 119(4): 629-643, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28065927

RESUMEN

Background and Aims: Roots have complex anatomical structures, and certain localized cell layers develop suberized apoplastic barriers. The size and tightness of these barriers depend on the growth conditions and on the age of the root. Such complex anatomical structures result in a composite water and solute transport in roots. Methods: Development of apoplastic barriers along barley seminal roots was detected using various staining methods, and the suberin amounts in the apical and basal zones were analysed using gas chromatography-mass spectometry (GC-MS). The hydraulic conductivity of roots ( Lp r ) and of cortical cells ( Lp c ) was measured using root and cell pressure probes. Key Results: When grown in hydroponics, barley roots did not form an exodermis, even at their basal zones. However, they developed an endodermis. Endodermal Casparian bands first appeared as 'dots' as early as at 20 mm from the apex, whereas a patchy suberin lamellae appeared at 60 mm. The endodermal suberin accounted for the total suberin of the roots. The absolute amount in the basal zone was significantly higher than in the apical zone, which was inversely proportional to the Lp r . Comparison of Lp r and Lp c suggested that cell to cell pathways dominate for water transport in roots. However, the calculation of Lp r from Lp c showed that at least 26 % of water transport occurs through the apoplast. Roots had different solute permeabilities ( P sr ) and reflection coefficients ( σ sr ) for the solutes used. The σ sr was below unity for the solutes, which have virtually zero permeability for semi-permeable membranes. Conclusions: Suberized endodermis significantly reduces Lp r of seminal roots. The water and solute transport across barley roots is composite in nature and they do not behave like ideal osmometers. The composite transport model should be extended by adding components arranged in series (cortex, endodermis) in addition to the currently included components arranged in parallel (apoplastic, cell to cell pathways).


Asunto(s)
Hordeum/fisiología , Raíces de Plantas/fisiología , Transporte Biológico/fisiología , Cromatografía de Gases y Espectrometría de Masas , Hordeum/anatomía & histología , Hordeum/metabolismo , Hidroponía , Presión Hidrostática , Raíces de Plantas/anatomía & histología , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Agua/metabolismo
4.
Biochim Biophys Acta ; 1861(9 Pt B): 1336-1344, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26965486

RESUMEN

Using (14)C-labeled epoxiconazole as a tracer, cuticular permeability of Arabidopsis thaliana leaves was quantitatively measured in order to compare different wax and cutin mutants (wax2, cut1, cer5, att1, bdg, shn3 and shn1) to the corresponding wild types (Col-0 and Ws). Mutants were characterized by decreases or increases in wax and/or cutin amounts. Permeances [ms(-1)] of Arabidopsis cuticles either increased in the mutants compared to wild type or were not affected. Thus, genetic changes in wax and cutin biosynthesis in some of the investigated Arabidopsis mutants obviously impaired the coordinated cutin and wax deposition at the outer leaf epidermal cell wall. As a consequence, barrier properties of cuticles were significantly decreased. However, increasing cutin and wax amounts by genetic modifications, did not automatically lead to improved cuticular barrier properties. As an alternative approach to the radioactive transport assay, changes in chlorophyll fluorescence were monitored after foliar application of metribuzine, an herbicide inhibiting electron transport in chloroplasts. Since both, half-times of photosynthesis inhibition as well as times of complete inhibition, in fact correlated with (14)C-epoxiconazole permeances, different rates of decline of photosynthetic yield between mutants and wild type must be a function of foliar uptake of the herbicide across the cuticle. Thus, monitoring changes in chlorophyll fluorescence, instead of conducting radioactive transport assays, represents an easy-to-handle and fast alternative evaluating cuticular barrier properties of different genotypes. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.


Asunto(s)
Arabidopsis/genética , Cloroplastos/genética , Mutación/genética , Hojas de la Planta/genética , Transportadoras de Casetes de Unión a ATP/genética , Aciltransferasas/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Radioisótopos de Carbono/química , Compuestos Epoxi/química , Regulación de la Expresión Génica de las Plantas , Genotipo , Lípidos de la Membrana/genética , Hojas de la Planta/crecimiento & desarrollo , Factores de Transcripción/genética , Triazoles/química
5.
PLoS One ; 10(9): e0138555, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26383862

RESUMEN

We studied the effect of Silicon (Si) on Casparian band (CB) development, chemical composition of the exodermal CB and Si deposition across the root in the Si accumulators rice and maize and the Si non-accumulator onion. Plants were cultivated in nutrient solution with and without Si supply. The CB development was determined in stained root cross-sections. The outer part of the roots containing the exodermis was isolated after enzymatic treatment. The exodermal suberin was transesterified with MeOH/BF3 and the chemical composition was measured using gas chromatography-mass spectroscopy (GC-MS) and flame ionization detector (GC-FID). Laser ablation-inductively coupled plasma-mass spectroscopy (LA-ICP-MS) was used to determine the Si deposition across root cross sections. Si promoted CB formation in the roots of Si-accumulator and Si non-accumulator species. The exodermal suberin was decreased in rice and maize due to decreased amounts of aromatic suberin fractions. Si did not affect the concentration of lignin and lignin-like polymers in the outer part of rice, maize and onion roots. The highest Si depositions were found in the tissues containing CB. These data along with literature were used to suggest a mechanism how Si promotes the CB development by forming complexes with phenols.


Asunto(s)
Cebollas/efectos de los fármacos , Oryza/efectos de los fármacos , Fenoles/farmacología , Raíces de Plantas/efectos de los fármacos , Silicio/farmacología , Zea mays/efectos de los fármacos , Cebollas/crecimiento & desarrollo , Oryza/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo
6.
Plant Cell ; 23(9): 3392-411, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21954461

RESUMEN

Plants have a chemically heterogeneous lipophilic layer, the cuticle, which protects them from biotic and abiotic stresses. The mechanisms that regulate cuticle development are poorly understood. We identified a rice (Oryza sativa) dominant curly leaf mutant, curly flag leaf1 (cfl1), and cloned CFL1, which encodes a WW domain protein. We overexpressed both rice and Arabidopsis CFL1 in Arabidopsis thaliana; these transgenic plants showed severely impaired cuticle development, similar to that in cfl1 rice. Reduced expression of At CFL1 resulted in reinforcement of cuticle structure. At CFL1 was predominantly expressed in specialized epidermal cells and in regions where dehiscence and abscission occur. Biochemical evidence showed that At CFL1 interacts with HDG1, a class IV homeodomain-leucine zipper transcription factor. Suppression of HDG1 function resulted in similar defective cuticle phenotypes in wild-type Arabidopsis but much alleviated phenotypes in At cfl1-1 mutants. The expression of two cuticle development-associated genes, BDG and FDH, was downregulated in At CFL1 overexpressor and HDG1 suppression plants. HDG1 binds to the cis-element L1 box, which exists in the regulatory regions of BDG and FDH. Our results suggest that rice and Arabidopsis CFL1 negatively regulate cuticle development by affecting the function of HDG1, which regulates the downstream genes BDG and FDH.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Homeodominio/metabolismo , Oryza/genética , Epidermis de la Planta/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Leucina Zippers , Mutagénesis Insercional , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/genética
7.
Planta ; 234(1): 9-20, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21344313

RESUMEN

Cuticular penetration of five different ¹4C-labeled chemicals (benzoic acid, bitertanole, carbaryl, epoxiconazole and 4-nitrophenol) into Arabidopsis thaliana leaves was measured and permeances P (ms⁻¹) were calculated. Thus, cuticular barrier properties of A. thaliana leaves have been characterized quantitatively. Epoxiconazole permeance of A. thaliana was 2.79 × 10⁻8 ms⁻¹. When compared with cuticular permeances measured with intact stomatous and astomatous leaf sides of Prunus laurocerasus, frequently used in the past as a model species studying cuticular permeability, A. thaliana has a 48- to 66-fold higher permeance. When compared with epoxiconazole permeability of isolated cuticles of different species (Citrus aurantium, Hedera helix and P. laurocerasus) A. thaliana permeability is between 17- to 199-fold higher. Co-permeability experiments, simultaneously measuring ¹4C-epoxiconazole and ³H2O permeability of isolated cuticles of three species (C. aurantium, H. helix and P. laurocerasus) showed that ³H2O permeability was highly correlated with epoxiconazole permeability. The regression equation of this correlation can be used predicting cuticular transpiration of intact stomatous leaves of A. thaliana, where a direct measurement of cuticular permeation using ³H2O is impossible. Water permeance estimated for A. thaliana was 4.55 × 10⁻8 m⁻¹, which is between 12- and 91-fold higher than water permeances measured with isolated cuticles of C. aurantium, H. helix and P. laurocerasus. This indicates that cuticular water permeability of the intact stomatous leaves of the annual species A. thaliana is fairly high and in the upper range compared with most P values of perennial species published in the past.


Asunto(s)
Arabidopsis/fisiología , Permeabilidad de la Membrana Celular/fisiología , Citrus/fisiología , Hedera/fisiología , Epidermis de la Planta/fisiología , Hojas de la Planta/fisiología , Transpiración de Plantas/fisiología , Prunus/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA