Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
RSC Adv ; 14(14): 10120-10130, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38566837

RESUMEN

Hybrid supercapacitors can produce extraordinary advances in specific power and energy to display better electrochemical performance and better cyclic stability. Amalgamating metal oxides with metal-organic frameworks endows the prepared composites with unique properties and advantageous possibilities for enhancing the electrochemical capabilities. The present study focused on the synergistic effects of the CuCo(5-NIPA)-Nd2O3 composite. Employing a half-cell configuration, we conducted a comprehensive electrochemical analysis of CuCo(5-NIPA), Nd2O3, and their composite. Owing to the best performance of the composite, the hybrid device prepared from CuCo(5-NIPA)-Nd2O3 and activated carbon demonstrated a specific capacity of 467.5 C g-1 at a scan rate of 3 mV s-1, as well as a phenomenal energy and power density of 109.68 W h kg-1 and 4507 W kg-1, respectively. Afterwards, semi-empirical techniques and models were used to investigate the capacitive and diffusive mechanisms, providing important insights into the unique properties of battery-supercapacitor hybrids. These findings highlight the enhanced performance of the CuCo(5-NIPA)-Nd2O3 composite, establishing it as a unique and intriguing candidate for applications requiring the merging of battery and supercapacitor technologies.

2.
ChemSusChem ; : e202400450, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38660929

RESUMEN

For the sluggish reaction kinetics due to a four-electron transfer process, water oxidation is always a major obstacle to solar splitting of water to hydrogen. It remains a tough challenge to develop efficient nonnoble-metal photocatalysts for water oxidation. Herein, we decorate the host photocatalyst of Bi11VO19 nanotubes with the coatalyst of subnanometer MoOx clusters (denoted as Bi11VO19/MoOx hetero-nanotubes) via a one-step cation-exchange solvothermal reaction using Na2V6O16 nanowires as the hard template. It is observed that the morphology and microstructure of Bi11VO19/MoOx hetero-nanotubes vary with the dosage of Mo source and polyvinylpyrrolidone, as well as with the solvent composition. The optimized Bi11VO19/MoOx hetero-nanotubes significantly enhance the photooxidation of water to oxygen with visible light, delivering an oxygen production rate of 790 µmol g-1 h-1, which is 12 times that of bare Bi11VO19 nanotubes. In situ X-ray photoelectron spectroscopy and (photo)electrochemical characterization suggest that the enhanced photoactivity may be caused by the decorated cocatalyst of MoOx clusters, which extracts electrons from Bi11VO19 nanotubes, leaving an abundance of holes for water photooxidation. This work demonstrates a potential strategy to develop photocatalysts for energy conversion by constructing Bi11VO19-based nanostructures.

3.
Chem Asian J ; : e202400218, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38634303

RESUMEN

We have successfully synthesized a new Ni(II)-based coordination polymer (CP) [Ni2(cis-1,4-chdc)2(4,4'-bpy)3(H2O)2] (1); (cis-1,4- H2chdc=cis-1,4-cyclohexanedicarboxylic acid and 4,4'-bpy=4,4'-bipyridine) employing slow diffusion method in a single pot technique. The connectivity of Ni(II) ions and bridging cis-1,4-chdc ligand gives rise to a three-dimensional (3D) framework with 2-fold interpenetrated diamondoid topology. Interestingly, the synthesized CP acts as efficient catalyst for electrocatalytic water splitting. The water oxidation activity of compound 1 exhibits Tafel slope equivalent to 361.48 mV.dec-1 for hydrogen evolution reaction (HER) and 353.53 mV.dec-1 for oxygen evolution reaction (OER) in an alkaline medium while almost similar values of Tafel slope for HER and OER equivalent to 287.33 mV.dec-1 and 289.93 mV.dec-1 respectively in acidic medium. Thus, the compound 1 has excellent efficacy in catalyzing HER and OER in acidic as well as alkaline medium, which is ascribed to its distinctive 3D architecture.

4.
RSC Adv ; 14(9): 5981-5993, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38362074

RESUMEN

In the current study, the association and phase separation of cationic tetradecyltrimethylammonium bromide (TTAB) and nonionic Triton X-100 (TX-100) surfactants with promethazine hydrochloride (PMH) were investigated in aqueous ammonium-based solutions. The micellization nature of the TTAB and PMH drug mixture was examined by evaluating critical micelle concentration (CMC) and counterion binding extent (ß) at different salt contents and temperatures (298.15-323.15 K). Micelle formation in the TTAB + PMH mixture was enhanced in the presence of ammonium salts, whereas the process was delayed with an increase in temperature in the respective salt solution. With an increase in salt content, the cloud point (CP) of the TX-100 + PMH mixture decreased, which revealed that the respective progression occurred through the salting out phenomenon. In micellization and clouding processes, the changes in free energies ΔG0m and ΔG0c were found to be negative and positive, respectively, demonstrating that the corresponding processes are spontaneous and non-spontaneous. Standard enthalpies (ΔH0m/ΔH0c) and standard entropies (ΔS0m/ΔS0c) for the association and clouding processes, respectively, were also calculated and discussed. The core forces amid TTAB/TX-100 and PMH in the manifestation of electrolytes are dipole-dipole and hydrophobic forces among the employed components according to the values for ΔH0m/ΔH0c and ΔS0m/ΔS0c, respectively.

5.
Heliyon ; 10(3): e25385, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38356584

RESUMEN

The aim of this study was to prepare poly-N-isopropylmethacrylamide-co-acrylic acid-acrylamide [p-(NIPMAM-co-AA-AAm)] via precipitation polymerization in an aqueous medium. Rhodium nanoparticles were formed in the microgel network by an in-situ reduction technique with the addition of sodium borohydride as a reducing agent. Pure p-(NIPMAM-co-AA-AAm) and hybrid microgels [Rh-(p-NIPMAM-co-AA-AAm)] microgels were examined by using UV-Visible, FTIR (Fourier Transform Infrared), SEM (Scanning Electron Microscopy), TEM (Transmission Electron Microscopy), DLS (Dynamic Light Scattering) and XRD (X-Ray Diffraction) techniques. The catalytic activities of the hybrid microgel [Rh-(p-NIPMAM-co-AA-AAm)] for the degradation of azo dyes such as alizarin yellow (AY), congo red (CR), and methyl orange (MO) were compared and the mechanism of the catalytic action by this system was examined. Various parameters including the catalyst amount and dye concentration influenced the catalytic decomposition of azo dyes. In order to maximize the reaction conditions for the dye's quick and efficient decomposition, the reaction process was monitored by spectroscopic analysis. The rate constants for reductive degradation of azo dyes were measured under various conditions. When kapp values were compared for dyes, it was found that [Rh-(p-NIPMAM-co-AA-AAm)] hybrid microgels showed superior activity for the degradation of MO dyes compared to the reductive degradation of CR and AY.

6.
RSC Adv ; 14(4): 2205-2213, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38213966

RESUMEN

Efficient energy storage and conversion is crucial for a sustainable society. Battery-supercapacitor hybrid energy storage devices offer a promising solution, bridging the gap between traditional batteries and supercapacitors. In this regard, metal-organic frameworks (MOFs) have emerged as the most versatile functional compounds owing to their captivating structural features, unique properties, and extensive diversity of applications in energy storage. MOF properties are governed by the structure and topological characteristics, which are influenced by the types of ligands and metal nodes. Herein, MOFs based on pyridine 3,5-dicarboxylate (PYDC) ligand in combination with copper and cobalt are electrochemically analyzed. Owing to the promising initial characterization of Cu-PYDC-MOF, a battery supercapacitor hybrid device was fabricated, comprising Cu-PYDC-MOF and activated carbon (AC) electrodes. The device showcased energy and power density of 17 W h kg -1 and 2550 W kg -1, respectively. Dunn's model was employed to gain deeper insights into the capacitive and diffusive contributions of the device. With their performance and versatility, the PYDC-based MOFs stand at the forefront of energy technology, ready to power a brighter future for upcoming generations.

7.
ACS Omega ; 8(38): 34768-34786, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37780023

RESUMEN

Exceptional electrical conductivity and abundance of surface terminations like-F- and OH- leading to hydrophilicity make the family of 2D transition metal carbides/nitrides and carbonitrides (MXene) excellent candidates for energy storage and conversion applications. MXenes, however, undergo restacking of nanosheets via van der Waals interaction, hindering the active sites, leading to slow electronic and ionic kinetics, and ultimately affecting their electrochemical performance. Herein, we report binder-free cetyltrimethylammonium bromide-reduced graphene oxide (CTAB-rGO)-modified MXene hybrid films on nickel foam as a promising noble metal-free multifunctional electrode synthesized via layer-by-layer assembly and dip coating techniques, which effectively reduce restacking while improving the kinetics. The properties of the as-prepared electrocatalysts are investigated using various physiochemical characterizations and electrochemical measurements to accomplish the objective of "creating one kind of electrocatalyst for multiapplication" with a thorough understanding of the relationship between the material structure, morphology, and electrocatalytic performance. In energy conversion, the synergetic effect of MXene and the CTAB-rGO support helped increase the catalytic activity of the composite for electrochemical water splitting, demonstrating a current density of 10 mA/cm2 at an overpotential (η) of 360 V and a Tafel slope value of 56.6 mV/dec for hydrogen evolution reaction and a current density of 10 mA/cm2 at an overpotential (η) of 179 mV and a Tafel slope value of 47.03 mV/dec for oxygen evolution reaction in an alkaline medium. The electrode material also exhibited a higher oxidation current density (373.60 mA/cm2) compared to that of synthesized MXene toward methanol oxidation reaction in direct methanol fuel cell application. Additionally, the energy storage potential of CTAB-rGO modified MXene as electrode materials for supercapacitors with a high specific capacitance (544.50 F g-1 at 0.5 A g-1) and a good capacity retention of 87% after 5000 cycles was studied. These findings of this work showcase the potential of the electrocatalyst in both conversion and storage of electrochemical energy.

8.
RSC Adv ; 13(38): 26528-26543, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37674488

RESUMEN

In this work, a novel bimetallic Fe-Mg/MOF was synthesized through a cost-effective and rapid hydrothermal process. The structure, morphology, and composition were examined using X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy. Further, the Brunauer-Emmett-Teller (BET) measurement showed a 324 m2 g-1 surface area for Fe-Mg/MOF. The Fe-Mg/MOF achieved 1825 C g-1 capacity at 1.2 A g-1 current density, which is higher than simple Fe-MOF (1144 C g-1) and Mg-MOF (1401 C g-1). To assess the long-term stability of the asymmetric device, the bimetallic MOF supercapattery underwent 1000 charge/discharge cycles and retained 85% of its initial capacity. The energy and power densities were calculated to be 57 W h kg-1 and 2393 W kg-1, respectively. Additionally, Fe-Mg/MOF showed superior electrocatalytic performance in hydrogen evolution reaction (HER) by demonstrating a smaller Tafel slope of 51.43 mV dec-1. Our research lays the foundation for enhancing the efficiency of energy storage technologies, paving the way for more sustainable and robust energy solutions.

9.
J Colloid Interface Sci ; 646: 129-140, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37187046

RESUMEN

Metal organic frameworks (MOFs) with high porosity and highly tunable physical/chemical properties can serve as heterogeneous catalysts for CO2 photoreduction, but the application is hindered by the large band gap (Eg) and insufficient ligand-to-metal charge transfer (LMCT). In this study, a simple one-pot solvothermal strategy is proposed to prepare an amino-functionalized MOF (aU(Zr/In)) featuring an amino-functionalizing ligand linker and In-doped Zr-oxo clusters, which enables efficient CO2 reduction driven with visible light. The amino functionalization leads to a significant reduction of Eg as well as a charge redistribution of the framework, allowing the absorption of visible light and the efficient separation of photogenerated carriers. Furthermore, the incorporation of In not only promotes the LMCT process by creating oxygen vacancies in Zr-oxo clusters, but also greatly lowers the energy barrier of the intermediates for CO2-to-CO conversion. With the synergistic effects of the amino groups and the In dopants, the optimized aU(Zr/In) exhibits a CO production rate of 37.58 ± 1.06 µmol g-1 h-1, outperforming the isostructural University of Oslo-66- and Material of Institute Lavoisier-125-based photocatalysts. Our work demonstrates the potential of modifying MOFs with ligands and heteroatom dopants in metal-oxo clusters for solar energy conversion.

10.
Nanomaterials (Basel) ; 13(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37049288

RESUMEN

The conversion of worthless municipal solid wastes to valuables is a major step towards environmental conservation and sustainability. This work successfully proposed a technique to utilize the two most commonly available municipal solid wastes viz polythene (PE) and sugarcane bagasse (SB) for water decolorization application. An SBPE composite material was developed and co-pyrolyzed under an inert atmosphere to develop the activated SBPEAC composite. Both SBPE and SBPEAC composites were characterized to analyze their morphological characteristics, specific surface area, chemical functional groups, and elemental composition. The adsorption efficacies of the composites were comparatively tested in the removal of malachite green (MG) from water. The SBPEAC composite had a specific surface area of 284.5 m2/g and a pore size of ~1.33 nm. Batch-scale experiments revealed that the SBPEAC composite performed better toward MG adsorption compared to the SBPE composite. The maximum MG uptakes at 318 K on SBPEAC and SBPE were 926.6 and 375.6 mg/g, respectively. The adsorption of MG on both composites was endothermic. The isotherm and kinetic modeling data for MG adsorption on SBPEAC was fitted to pseudo-second-order kinetic and Langmuir isotherm models, while Elovich kinetic and D-R isotherm models were better fitted for MG adsorption on SBPE. Mechanistically, the MG adsorption on both SBPE and SBPEAC composites involved electrostatic interaction, H-bonding, and π-π/n-π interactions.

11.
RSC Adv ; 13(19): 12634-12645, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37101525

RESUMEN

A supercapattery is a hybrid device that is a combination of a battery and a capacitor. Niobium sulfide (NbS), silver sulfide (Ag2S), and niobium silver sulfide (NbAg2S) were synthesized by a simple hydrothermal method. NbAg2S (50/50 wt% ratio) had a specific capacity of 654 C g-1, which was higher than the combined specific capacities of NbS (440 C g-1) and Ag2S (232 C g-1), as determined by the electrochemical investigation of a three-cell assembly. Activated carbon and NbAg2S were combined to develop the asymmetric device (NbAg2S//AC). A maximum specific capacity of 142 C g-1 was delivered by the supercapattery (NbAg2S//AC). The supercapattery (NbAg2S/AC) provided 43.06 W h kg-1 energy density while retaining 750 W kg-1 power density. The stability of the NbAg2S//AC device was evaluated by subjecting it to 5000 cycles. After 5000 cycles, the (NbAg2S/AC) device still had 93% of its initial capacity. This research indicates that merging NbS and Ag2S (50/50 wt% ratio) may be the best choice for future energy storage technologies.

12.
Dalton Trans ; 52(18): 6166-6174, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37074031

RESUMEN

Metal-organic frameworks are a complex of metal nodes and organic ligands that have attracted widespread interest in technological applications owing to their diverse characteristics. Bi-linker MOFs can prove to be more conductive and efficient than the mono-linker MOFs, however, they have been investigated less often. In this current study two distinct organic ligands i.e., 1,2,4,5-benzene-tetra-carboxylic acid and pyridine-3,5-dicarboxylic acid were used to synthesize a bi-linker nickel MOF. The obtained Ni-P-H MOF having a unique construction was examined for its structural, morphological, and electrochemical properties. To the best of our knowledge, for the first time its potential use was specifically explored as a component in hybrid supercapacitors, as it has not been previously reported for such applications. In standard three-electrode assembly, the electrochemical properties of the Ni-P-H MOF were examined, followed by the fabrication of a Ni-P-H MOF hybrid supercapacitor with activated carbon. This hybridization results in a device with both high energy and power density, making it suitable for a variety of practical applications. To further understand the behavior of this hybrid supercapacitor, a semi-empirical technique was implemented employing Dunn's model. This model allows for the extraction of regression parameters and the quantification of the diffusive/capacitive contributions of the two-cell assembly. Overall, the combination of Ni-PMA-H2pdc MOF//activated carbon in a hybrid supercapacitor holds great potential for advancements in energy storage technology.

13.
RSC Adv ; 13(5): 2860-2870, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36756429

RESUMEN

Metal-organic frameworks (MOFs) have emerged as intriguing porous materials with diverse potential applications. Herein, we synthesized a copper-based MOF (MOF-199) and investigated its use in energy storage applications. Methods were adapted to intensify the electrochemical characteristics of MOF-199 by preparing composites with graphene and polyaniline (PANI). The specific capacity of the synthesized MOF in a three-electrode assembly was significantly enhanced from 88 C g-1 to 475 C g-1 and 766 C g-1 with the addition of graphene and polyaniline (PANI), respectively. Due to the superior performance of (MOF-199)/PANI, a hybrid supercapacitor was fabricated with the structure of (MOF-199)/PANI//activated carbon, which displayed an excellent maximum energy and power density of 64 W h kg-1 and 7200 W kg-1, respectively. The hybrid device exhibited an appreciable capacity retention of 92% after 1000 charge-discharge cycles. Moreover, using Dunn's model, the capacitive and diffusive contributions as well as the k 1 and k 2 currents of the fabricated device were calculated, validating the hybrid nature of the supercapattery device. The current studies showed that MOF-199 exhibits promising electrochemical features and can be considered as potential electrode material for hybrid energy storage devices.

14.
PeerJ ; 11: e14489, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36643637

RESUMEN

Background: Coronavirus disease has affected the entire population worldwide in terms of physical and environmental consequences. Therefore, the current study demonstrates the changes in the concentration of gaseous pollutants and their health effects during the COVID-19 pandemic in Delhi, the national capital city of India. Methodology: In the present study, secondary data on gaseous pollutants such as nitrogen dioxide (NO2), carbon monoxide (CO), sulfur dioxide (SO2), ammonia (NH3), and ozone (O3) were collected from the Central Pollution Control Board (CPCB) on a daily basis. Data were collected from January 1, 2020, to September 30, 2020, to determine the relative changes (%) in gaseous pollutants for pre-lockdown, lockdown, and unlockdown stages of COVID-19. Results: The current findings for gaseous pollutants reveal that concentration declined in the range of 51%-83% (NO), 40%-69% (NOx), 31%-60% (NO2), and 25%-40% (NH3) during the lockdown compared to pre-lockdown period, respectively. The drastic decrease in gaseous pollutants was observed due to restricted measures during lockdown periods. The level of ozone was observed to be higher during the lockdown periods as compared to the pre-lockdown period. These gaseous pollutants are linked between the health risk assessment and hazard identification for non-carcinogenic. However, in infants (0-1 yr), Health Quotient (HQ) for daily and annual groups was found to be higher than the rest of the exposed group (toddlers, children, and adults) in all the periods. Conclusion: The air quality values for pre-lockdown were calculated to be "poor category to "very poor" category in all zones of Delhi, whereas, during the lockdown period, the air quality levels for all zones were calculated as "satisfactory," except for Northeast Delhi, which displayed the "moderate" category. The computed HQ for daily chronic exposure for each pollutant across the child and adult groups was more than 1 (HQ > 1), which indicated a high probability to induce adverse health outcomes.


Asunto(s)
Contaminantes Atmosféricos , COVID-19 , Contaminantes Ambientales , Ozono , Lactante , Adulto , Humanos , COVID-19/epidemiología , Contaminantes Atmosféricos/efectos adversos , Material Particulado/análisis , Dióxido de Nitrógeno/efectos adversos , Pandemias , Control de Enfermedades Transmisibles , Ozono/efectos adversos
15.
J Atmos Chem ; 80(1): 53-76, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35992767

RESUMEN

A novel coronavirus has affected almost all countries and impacted the economy, environment, and social life. The short-term impact on the environment and human health needs attention to correlate the Volatile organic compounds (VOCs) and health assessment for pre-, during, and post lockdowns. Therefore, the current study demonstrates VOC changes and their effect on air quality during the lockdown. The findings of result, the levels of the mean for total VOC concentrations were found to be 15.45 ± 21.07, 2.48 ± 1.61, 19.25 ± 28.91 µg/m3 for all monitoring stations for pre-, during, and post lockdown periods. The highest value of TVOCs was observed at Thane, considered an industrial region (petroleum refinery), and the lowest at Bandra, which was considered a residential region, respectively. The VOC levels drastically decreased by 52%, 89%, 80%, and 97% for benzene, toluene, ethylbenzene, and m-xylene, respectively, during the lockdown period compared to the previous year. In the present study, the T/B ratio was found lower in the lockdown period as compared to the pre-lockdown period. This can be attributed to the complete closure of non-traffic sources such as industries and factories during the lockdown. The Lifetime Cancer Risk values for all monitoring stations for benzene for pre-and-post lockdown periods were higher than the prescribed value, except during the lockdown period. Supplementary Information: The online version contains supplementary material available at 10.1007/s10874-022-09440-5.

16.
Sci Rep ; 12(1): 21700, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36522441

RESUMEN

The intensified quest for efficient materials drives us to study the alkali (Na)-based niobate (NaNbO3) and tantalate (NaTaO3) perovskites while exploiting the first-principles approach based on density functional theory, coded within WIEN2K. While using the Birch Murnaghan fit, we find these materials to be stable structurally. Similarly, the ab-initio molecular dynamics simulations (AIMD) at room temperature reveals that the compounds exhibit no structural distortion and are stable at room temperature. By using the recommended modified Becke-Johnson potential, we determine the electronic characteristics of the present materials providing insight into their nature: they are revealed to be indirect semiconductors with the calculated bandgaps of 2.5 and 3.8 eV for NaNbO3 and NaTaO3, respectively. We also determine the total and partial density of states for both materials and the results obtained for the bandgap energies of these materials are consistent with those determined by the band structure. We find that both compounds exhibit transparency to the striking photon at low energy and demonstrate absorption and optical conduction in the UV region. The elastic study shows that these compounds are mechanically stable, whereas NaNbO3 exhibits stronger ability to withstand compressive as well as shear stresses and resists change in shape while NaTaO3 demonstrates weaker ability to resist change in volume. We also find that none of the compound is perfectly isotropic and NaNbO3 and NaTaO3 are ductile and brittle in nature, respectively. By studying the optical properties of these materials, we infer that they are promising candidates for applications in optoelectronic devices. We believe that this report will invoke the experimental studies for further investigation.

18.
Chem Biodivers ; 19(12): e202200540, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36310125

RESUMEN

A new series of thieno nucleus embellished trinuclear (19, 20) and tetranuclear (21-24) nitrogen heteroaryl have been synthesized by the Suzuki cross-coupling reaction using bis(triphenylphosphine)palladium(II) dichloride. All the synthesized compounds were characterized by IR, 1 H-NMR, 13 CNMR and Mass spectral properties. In vitro antibacterial studies of the synthesized compound were conducted using broth microdilution assay employing Gram-positive and Gram-negative strains and half-maximal inhibitory concentration (IC50 ) was determined. The result showed that compound 20 possess best antibacterial activity against S. aureus and E. coli with IC50 values of 60 µg mL-1 and 90 µg mL-1 . Further to determine the mode of antibacterial action, compounds 20 and 21 were examined for in vitro bacterial dehydrogenase inhibitory assay. To understand the binding affinity of the synthesized compounds, the docking study was performed in the bacterial dehydrogenase enzyme by AutoDock Vina software and structure was confirmed by Discovery Studio Visualizer. All the synthesized compounds were docked in a good manner within the active sites of the bacterial dehydrogenase enzyme and exhibited good binding energies.


Asunto(s)
Nitrógeno , Staphylococcus aureus , Escherichia coli , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química , Bacterias , Modelos Teóricos , Oxidorreductasas , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Estructura Molecular
19.
Front Pharmacol ; 13: 945323, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36120315

RESUMEN

A comprehensive aqueous phase spectrophotometric study concerning the trace level determination of iridium (III) by its reaction with benzopyran-derived chromogenic reagent, 6-chloro-3-hydroxy-7-methyl-2-(2'-thienyl)-4-oxo-4H-1-benzopyran (CHMTB), is performed. The complexing reagent instantly forms a yellow complex with Ir (III) at pH 4.63, where metal is bound to the ligand in a ratio of 1:2 as deduced by Job's continuous variations, mole ratio, and equilibrium shift methods. The complex absorbs maximally at 413-420 nm retaining its stability for up to 4 days. An optimum set of conditions have been set with respect to the parameters governing the formation of the complex. Under the set optimal conditions, the Ir (III)-CHMTB complex coheres to Beer's law between 0.0 and 1.5 µg Ir (III) mL-1. The attenuation coefficient and Sandell's sensitivity are, respectively, 1.18×105 L mol-1 cm-1 and 0.00162 µg cm-2 at 415 nm. The correlation coefficient (r) and standard deviation (SD) were 0.9999 and ± 0.001095, respectively, whereas the detection limit as analyzed was 0.007437 µg ml-1. The interference with respect to analytically important cations and complexing agents has been studied thoroughly. It is found that the majority of the ions/agents do not intervene with the formation of the complex, thus adding to the versatility of the method. The results obtained from the aforesaid studies indicate a simple, fast, convenient, sensitive, and versatile method for microgram analysis of iridium (III) using CHMTB as a binding ligand. Furthermore, the studied complex is subjected to the evaluation of antibacterial and antioxidant capacity by employing the Agar Diffusion assay and DPPH. radical scavenging method, respectively. The results obtained from the mentioned assays reveal that the investigated complex possesses significant potency as an antibacterial and antioxidant agent. Finally, the computational approach through DFT of the formed complex confirmed the associated electronic properties of the studied complex.

20.
Appl Nanosci ; : 1-11, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36120603

RESUMEN

Nanostructured Zinc oxide (ZnO) materials have attained exciting research interests among various metal oxide nanoparticles due to their unique features. Thus, the scope of applications for ZnO nanoparticles (ZnO NPs) is vast and efficient. The current study demonstrates a simple and environmental-friendly approach for the synthesis of ZnO NPs using the extract of the Scoparia Dulcis. Scoparia Dulcis is a common medicinal plant in Kerala (India) that is traditionally used for its medicinal properties. Morphological characterizations of the as-synthesized ZnO NPs were evaluated using X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), and field-emission scanning electron microscopy (FESEM). The results revealed that ZnO NPs showed pebble-like morphology and possessed an average particle size of ~ 20 nm. Further, antibacterial and antifungal activities of as-prepared ZnO NPs were investigated against E. coli, Staphylococcus aureus, as well as Candida albicans, and Aspergillus niger, respectively, using the agar-well diffusion method. The results revealed that the prepared ZnO NPs shows excellent antimicrobial activity against the examined microorganisms. Moreover, the antioxidant activity of the as-synthesized ZnO NPs was evaluated using the DPPH assay, which indicated an excellent IC50 value of 1.78 µg/mL that shows high antioxidant activity. All these results proved that the S. dulcis plant extract-mediated synthesis method is a simple, low-cost, eco-friendly procedure for preparing efficient ZnO NPs for biomedical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...