Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 328
Filtrar
1.
Life Sci Alliance ; 7(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38702075

RESUMEN

Excess abdominal fat is a sexually dimorphic risk factor for cardio-metabolic disease and is approximated by the waist-to-hip ratio adjusted for body mass index (WHRadjBMI). Whereas this trait is highly heritable, few causal genes are known. We aimed to identify novel drivers of WHRadjBMI using systems genetics. We used two independent cohorts of adipose tissue gene expression and constructed sex- and depot-specific Bayesian networks to model gene-gene interactions from 8,492 genes. Using key driver analysis, we identified genes that, in silico and putatively in vitro, regulate many others. 51-119 key drivers in each network were replicated in both cohorts. In other cell types, 23 of these genes are found in crucial adipocyte pathways: Wnt signaling or mitochondrial function. We overexpressed or down-regulated seven key driver genes in human subcutaneous pre-adipocytes. Key driver genes ANAPC2 and RSPO1 inhibited adipogenesis, whereas PSME3 increased adipogenesis. RSPO1 increased Wnt signaling activity. In differentiated adipocytes, MIGA1 and UBR1 down-regulation led to mitochondrial dysfunction. These five genes regulate adipocyte function, and we hypothesize that they regulate fat distribution.


Asunto(s)
Adipocitos , Adipogénesis , Distribución de la Grasa Corporal , Humanos , Adipocitos/metabolismo , Masculino , Femenino , Adipogénesis/genética , Índice de Masa Corporal , Adulto , Redes Reguladoras de Genes , Persona de Mediana Edad , Teorema de Bayes , Relación Cintura-Cadera , Tejido Adiposo/metabolismo , Vía de Señalización Wnt/genética , Regulación de la Expresión Génica/genética , Biología de Sistemas/métodos
2.
Cell Death Dis ; 15(4): 285, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653969

RESUMEN

Despite advances in the treatment and care of severe physical injuries, trauma remains one of the main reasons for disability-adjusted life years worldwide. Trauma patients often suffer from disturbances in energy utilization and metabolic dysfunction, including hyperglycemia and increased insulin resistance. White adipose tissue plays an essential role in the regulation of energy homeostasis and is frequently implicated in traumatic injury due to its ubiquitous body distribution but remains poorly studied. Initial triggers of the trauma response are mainly damage-associated molecular patterns (DAMPs) such as histones. We hypothesized that DAMP-induced adipose tissue inflammation contributes to metabolic dysfunction in trauma patients. Therefore, we investigated whether histone release during traumatic injury affects adipose tissue. Making use of a murine polytrauma model with hemorrhagic shock, we found increased serum levels of histones accompanied by an inflammatory response in white adipose tissue. In vitro, extracellular histones induced an inflammatory response in human adipocytes. On the molecular level, this inflammatory response was mediated via a MYD88-IRAK1-ERK signaling axis as demonstrated by pharmacological and genetic inhibition. Histones also induced lytic cell death executed independently of caspases and RIPK1 activity. Importantly, we detected increased histone levels in the bloodstream of patients after polytrauma. Such patients might benefit from a therapy consisting of activated protein C and the FDA-approved ERK inhibitor trametinib, as this combination effectively prevented histone-mediated effects on both, inflammatory gene activation and cell death in adipocytes. Preventing adipose tissue inflammation and adipocyte death in patients with polytrauma could help minimize posttraumatic metabolic dysfunction.


Asunto(s)
Adipocitos , Histonas , Inflamación , Factor 88 de Diferenciación Mieloide , Humanos , Animales , Histonas/metabolismo , Adipocitos/metabolismo , Adipocitos/efectos de los fármacos , Inflamación/patología , Inflamación/metabolismo , Ratones , Factor 88 de Diferenciación Mieloide/metabolismo , Muerte Celular/efectos de los fármacos , Masculino , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Endogámicos C57BL , Heridas y Lesiones/complicaciones , Heridas y Lesiones/metabolismo , Heridas y Lesiones/patología , Transducción de Señal/efectos de los fármacos
3.
Environ Res ; 252(Pt 2): 118847, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38582427

RESUMEN

Growing evidence suggests that exposure to certain metabolism-disrupting chemicals (MDCs), such as the phthalate plasticizer DEHP, might promote obesity in humans, contributing to the spread of this global health problem. Due to the restriction on the use of phthalates, there has been a shift to safer declared substitutes, including the plasticizer diisononyl-cyclohexane-1,2-dicarboxylate (DINCH). Notwithstanding, recent studies suggest that the primary metabolite monoisononyl-cyclohexane-1,2-dicarboxylic acid ester (MINCH), induces differentiation of human adipocytes and affects enzyme levels of key metabolic pathways. Given the lack of methods for assessing metabolism-disrupting effects of chemicals on adipose tissue, we used metabolomics to analyze human SGSB cells exposed to DINCH or MINCH. Concentration analysis of DINCH and MINCH revealed that uptake of MINCH in preadipocytes was associated with increased lipid accumulation during adipogenesis. Although we also observed intracellular uptake for DINCH, the solubility of DINCH in cell culture medium was limited, hampering the analysis of possible effects in the µM concentration range. Metabolomics revealed that MINCH induces lipid accumulation similar to peroxisome proliferator-activated receptor gamma (PPARG)-agonist rosiglitazone through upregulation of the pyruvate cycle, which was recently identified as a key driver of de novo lipogenesis. Analysis of the metabolome in the presence of the PPARG-inhibitor GW9662 indicated that the effect of MINCH on metabolism was mediated at least partly by a PPARG-independent mechanism. However, all effects of MINCH were only observed at high concentrations of 10 µM, which are three orders of magnitudes higher than the current concentrations of plasticizers in human serum. Overall, the assessment of the effects of DINCH and MINCH on SGBS cells by metabolomics revealed no adipogenic potential at physiologically relevant concentrations. This finding aligns with previous in vivo studies and supports the potential of our method as a New Approach Method (NAM) for the assessment of adipogenic effects of environmental chemicals.

4.
Nat Metab ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565923

RESUMEN

White adipocytes function as major energy reservoirs in humans by storing substantial amounts of triglycerides, and their dysfunction is associated with metabolic disorders; however, the mechanisms underlying cellular specialization during adipogenesis remain unknown. Here, we generate a spatiotemporal proteomic atlas of human adipogenesis, which elucidates cellular remodelling as well as the spatial reorganization of metabolic pathways to optimize cells for lipid accumulation and highlights the coordinated regulation of protein localization and abundance during adipocyte formation. We identify compartment-specific regulation of protein levels and localization changes of metabolic enzymes to reprogramme branched-chain amino acids and one-carbon metabolism to provide building blocks and reduction equivalents. Additionally, we identify C19orf12 as a differentiation-induced adipocyte lipid droplet protein that interacts with the translocase of the outer membrane complex of lipid droplet-associated mitochondria and regulates adipocyte lipid storage by determining the capacity of mitochondria to metabolize fatty acids. Overall, our study provides a comprehensive resource for understanding human adipogenesis and for future discoveries in the field.

5.
Mol Syndromol ; 15(2): 104-113, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38585545

RESUMEN

Introduction: Early-onset severe obesity is usually the result of an underlying genetic disorder, and several genes have recently been shown to cause syndromic and nonsyndromic forms of obesity. The "centrosomal protein 19 (CEP19)" gene encodes for a centrosomal and ciliary protein. Homozygous variants in the CEP19 gene are extremely rare causes of early-onset severe monogenic obesity. Herein, we present a Turkish family with early-onset severe obesity with variable features. Methods: Sanger sequencing and whole-exome sequencing were performed to identify the genetic etiology in the family. Results: The index case was a 12-year-old female who presented with severe obesity (BMI of 62.7 kg/m2), metabolic syndrome, and diabetic ketoacidosis. Her nonidentical twin female siblings also had early-onset severe obesity, metabolic syndrome, and diabetes. In addition, one of the affected siblings had situs inversus abdominalis, polysplenia, lumbar vertebral fusion, and abnormal lateralization. A novel homozygous nonsense (c.169C>T, p. Arg57*) pathogenic variant was detected in exon 3 of the CEP19 gene in all affected members of the family. One unaffected sister and unaffected parents were heterozygous for the variant. This variant is predicted to cause a stop codon at amino acid sequence 57, leading to a truncated CEP19 protein. Discussion/Conclusion: Our study expands the phenotypical manifestations and variation database of CEP19 variants. The findings in one of our patients reaffirm its role in the assembly and function of both motile and immotile cilia.

6.
Clin Obes ; 14(3): e12659, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38602039

RESUMEN

Nearly 90 clinicians and researchers from around the world attended the first IMPROVE 2022 International Meeting on Pathway-Related Obesity. Delegates attended in person or online from across Europe, Argentina and Israel to hear the latest scientific and clinical developments in hyperphagia and severe, early-onset obesity, and set out a vision of excellence for the future for improving the diagnosis, treatment, and care of patients with melanocortin-4 receptor (MC4R) pathway-related obesity. The meeting co-chair Peter Kühnen, Charité Universitätsmedizin Berlin, Germany, indicated that change was needed with the rapidly increasing prevalence of obesity and the associated complications to improve the understanding of the underlying mechanisms and acknowledge that monogenic forms of obesity can play an important role, providing insights that can be applied to a wider group of patients with obesity. World-leading experts presented the latest research and led discussions on the underlying science of obesity, diagnosis (including clinical and genetic approaches such as the role of defective MC4R signalling), and emerging clinical data and research with targeted pharmacological approaches. The aim of the meeting was to agree on the questions that needed to be addressed in future research and to ensure that optimised diagnostic work-up was used with new genetic testing tools becoming available. This should aid the planning of new evidence-based treatment strategies for the future, as explained by co-chair Martin Wabitsch, Ulm University Medical Center, Germany.


Asunto(s)
Obesidad , Receptor de Melanocortina Tipo 4 , Humanos , Obesidad/terapia , Receptor de Melanocortina Tipo 4/genética , Receptor de Melanocortina Tipo 4/metabolismo , Hiperfagia , Transducción de Señal
7.
Klin Padiatr ; 2024 Mar 08.
Artículo en Alemán | MEDLINE | ID: mdl-38458231

RESUMEN

Bardet-Biedl syndrome (BBS) is a rare, autosomal recessive multisystem disease. The pathophysiological origin is a dysfunction of the primary cilium. Clinical symptoms are heterogeneous and variable: retinal dystrophy, obesity, polydactyly, kidney abnormalities, hypogenitalism and developmental delays are the most common features. By the approval of the melanocortin 4 receptor agonist setmelanotide, a drug therapy for BBS-associated hyperphagia and obesity can be offered for the first time. Hyperphagia and severe obesity represent a considerable burden and are associated with comorbidity and increased mortality risk. Due to the limited experience with setmelanotide in BBS, a viable comprehensive therapy concept is to be presented. Therapy decision and management should be conducted in expert centers. For best therapeutic effects with setmelanotide adequate information of the patient about the modalities of the therapy (daily subcutaneous injection) and possible adverse drug events are necessary. Furthermore, the involvement of psychologists, nutritionists and nursing services (support for the application) should be considered together with the patient. The assessment of therapy response should be carried out with suitable outcome measurements and centrally reported to an adequate register.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38470203

RESUMEN

PURPOSE: Bi-allelic pathogenic leptin gene variants cause severe early onset obesity usually associated with low or undetectable circulating leptin levels. Recently, variants have been described resulting in secreted mutant forms of the hormone leptin with either biologically inactive or antagonistic properties. METHODS: We conducted a systematic literature research supplemented by unpublished data from patients at our center as well as new in vitro analyses to provide a systematic classification of congenital leptin deficiency based on the molecular and functional characteristics of the underlying leptin variants and investigated the correlation of disease subtype with severity of the clinical phenotype. RESULTS: A total of 28 distinct homozygous leptin variants were identified in 148 patients. The identified variants can be divided into three different subtypes of congenital leptin deficiency: classical hormone deficiency (21 variants in 128 patients), biologically inactive hormone (3 variants in 12 patients) and antagonistic hormone (3 variants in 7 patients). Only 1 variant (n=1 patient) remained unclassified. Patients with biological inactive leptin have a higher percentage of 95th BMI percentile (%BMIp95) compared to patients with classical hormone deficiency. While patients with both classical hormone deficiency and biological inactive hormone can be treated with the same starting dose of metreleptin, patients with antagonistic hormone need a variant-tailored treatment approach to overcome the antagonistic properties of the variant leptin. MAIN CONCLUSIONS: Categorization of leptin variants based on molecular and functional characteristics helps to determine the most adequate approach to treatment of patients with congenital leptin deficiency.

9.
Nat Commun ; 15(1): 1391, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360943

RESUMEN

In obesity, sustained adipose tissue (AT) inflammation constitutes a cellular memory that limits the effectiveness of weight loss interventions. Yet, the impact of fasting regimens on the regulation of AT immune infiltration is still elusive. Here we show that intermittent fasting (IF) exacerbates the lipid-associated macrophage (LAM) inflammatory phenotype of visceral AT in obese mice. Importantly, this increase in LAM abundance is strongly p53 dependent and partly mediated by p53-driven adipocyte apoptosis. Adipocyte-specific deletion of p53 prevents LAM accumulation during IF, increases the catabolic state of adipocytes, and enhances systemic metabolic flexibility and insulin sensitivity. Finally, in cohorts of obese/diabetic patients, we describe a p53 polymorphism that links to efficacy of a fasting-mimicking diet and that the expression of p53 and TREM2 in AT negatively correlates with maintaining weight loss after bariatric surgery. Overall, our results demonstrate that p53 signalling in adipocytes dictates LAM accumulation in AT under IF and modulates fasting effectiveness in mice and humans.


Asunto(s)
Resistencia a la Insulina , Ayuno Intermitente , Proteína p53 Supresora de Tumor , Animales , Humanos , Ratones , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Inflamación/metabolismo , Resistencia a la Insulina/genética , Obesidad/genética , Obesidad/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Pérdida de Peso
10.
Nat Metab ; 6(2): 273-289, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38286821

RESUMEN

Mitochondrial dysfunction is a characteristic trait of human and rodent obesity, insulin resistance and fatty liver disease. Here we show that high-fat diet (HFD) feeding causes mitochondrial fragmentation in inguinal white adipocytes from male mice, leading to reduced oxidative capacity by a process dependent on the small GTPase RalA. RalA expression and activity are increased in white adipocytes after HFD. Targeted deletion of RalA in white adipocytes prevents fragmentation of mitochondria and diminishes HFD-induced weight gain by increasing fatty acid oxidation. Mechanistically, RalA increases fission in adipocytes by reversing the inhibitory Ser637 phosphorylation of the fission protein Drp1, leading to more mitochondrial fragmentation. Adipose tissue expression of the human homolog of Drp1, DNM1L, is positively correlated with obesity and insulin resistance. Thus, chronic activation of RalA plays a key role in repressing energy expenditure in obese adipose tissue by shifting the balance of mitochondrial dynamics toward excessive fission, contributing to weight gain and metabolic dysfunction.


Asunto(s)
Resistencia a la Insulina , Masculino , Ratones , Humanos , Animales , Adipocitos Blancos/metabolismo , Obesidad/etiología , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Aumento de Peso
11.
Am J Med Genet A ; 194(6): e63533, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38234231

RESUMEN

Morbidity and mortality rates in patients with autosomal recessive, congenital generalized lipodystrophy type 4 (CGL4), an ultra-rare disorder, remain unclear. We report on 30 females and 16 males from 10 countries with biallelic null variants in CAVIN1 gene (mean age, 12 years; range, 2 months to 41 years). Hypertriglyceridemia was seen in 79% (34/43), hepatic steatosis in 82% (27/33) but diabetes mellitus in only 21% (8/44). Myopathy with elevated serum creatine kinase levels (346-3325 IU/L) affected all of them (38/38). 39% had scoliosis (10/26) and 57% had atlantoaxial instability (8/14). Cardiac arrhythmias were detected in 57% (20/35) and 46% had ventricular tachycardia (16/35). Congenital pyloric stenosis was diagnosed in 39% (18/46), 9 had esophageal dysmotility and 19 had intestinal dysmotility. Four patients suffered from intestinal perforations. Seven patients died at mean age of 17 years (range: 2 months to 39 years). The cause of death in four patients was cardiac arrhythmia and sudden death, while others died of prematurity, gastrointestinal perforation, and infected foot ulcers leading to sepsis. Our study highlights high prevalence of myopathy, metabolic abnormalities, cardiac, and gastrointestinal problems in patients with CGL4. CGL4 patients are at high risk of early death mainly caused by cardiac arrhythmias.


Asunto(s)
Lipodistrofia Generalizada Congénita , Proteínas de Unión al ARN , Humanos , Masculino , Femenino , Lipodistrofia Generalizada Congénita/genética , Lipodistrofia Generalizada Congénita/complicaciones , Lipodistrofia Generalizada Congénita/patología , Adolescente , Niño , Lactante , Preescolar , Adulto , Adulto Joven , Arritmias Cardíacas/genética , Arritmias Cardíacas/patología , Hipertrigliceridemia/genética , Hipertrigliceridemia/complicaciones , Hipertrigliceridemia/patología
12.
Obes Facts ; 17(1): 59-71, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38081152

RESUMEN

INTRODUCTION: While invasive and associated with risks, metabolic and bariatric surgery (MBS) can promote sustained weight loss and substantial health benefits in youths with extreme obesity. The path toward informed decision making for or against MBS is poorly characterized and postoperative follow-up to assess risks and benefits is inconsistent. In youths with extreme obesity, we aimed to evaluate decision making toward MBS, as well as MBS outcomes and adherence with follow-up and recommendations in the setting of a structured pre- and post-MBS program. METHODS: Participants were recruited in the setting of the multicenter "Youth with Extreme Obesity Study" (YES). YES is a cohort study in adolescents and young adults aged 14-24 years with obesity (BMI ≥30.0 kg/m2) who were recruited at four medical centers and one job center in Germany between 2012 and 2018. Participants at two medical centers with BMI ≥35 kg/m2, aged 14-24 years, and interested in pursuing MBS were included in the subproject 3 "Safety and effectiveness of weight loss surgery in adolescents with severe obesity within a structured pre- and post-surgery treatment program - an observational study" that comprised a 2-months pre- and 12-months post-MBS program. RESULTS: Twenty-eight of 169 youths (17%) with BMI ≥35 kg/m2 were interested in MBS. Twenty-six fulfilled published eligibility criteria for MBS and participated in the structured pre-MBS preparation program. Of these, 9 participants (2 females) decided against, and 17 (n = 11 females) decided for MBS (sleeve gastrectomy). The 12-month follow-up rate was high (16/17 [94%]) and all participants achieved significant weight reduction (ΔBMI: -16.1 ± 5.6 kg/m2). Eleven of 16 participants (69%) reported taking the prescribed dietary supplements in the first year after MBS, but only five of them (31%) did so daily. In contrast to the high 12-month retention rate, follow-up after completion of the structured program was low at 24-months (9/16 [56%]) and at 36-months (5/15 [36%]), respectively. CONCLUSION: Participants demonstrated active decision making for or against MBS and high adherence with the structured pre- and 12 months post-MBS program, but participation was low thereafter. These findings endorse the need for longer term structured post-MBS programs to capture long-term outcomes and provide adequate care in this vulnerable group at the transition to adulthood.


Asunto(s)
Cirugía Bariátrica , Obesidad Mórbida , Adolescente , Femenino , Humanos , Adulto Joven , Cirugía Bariátrica/métodos , Estudios de Cohortes , Estudios de Seguimiento , Obesidad/cirugía , Obesidad Mórbida/cirugía , Masculino
13.
J Steroid Biochem Mol Biol ; 236: 106436, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38035948

RESUMEN

Testosterone biosynthesis from its precursor androstenedione is thought to be exclusively catalysed by the 17ß-hydroxysteroid dehydrogenases-HSD17B3 in testes, and AKR1C3 in the ovary, adrenal and peripheral tissues. Here we show for the first time that the glucocorticoid activating enzyme 11ß-hydroxysteroid dehydrogenase type 1 (HSD11B1) can also catalyse the 17ß-reduction of androstenedione to testosterone, using a combination of in vitro enzyme kinetic assays, mathematical modelling, and molecular docking analysis. Furthermore, we show that co-expression of HSD11B1 and AKR1C3 increases testosterone production several-fold compared to the rate observed with AKR1C3 only, and that HSD11B1 is likely to contribute significantly to testosterone production in peripheral tissues.


Asunto(s)
Androstenodiona , Testosterona , Femenino , Humanos , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/genética , Glucocorticoides , Simulación del Acoplamiento Molecular , Hidroxiprostaglandina Deshidrogenasas , 3-Hidroxiesteroide Deshidrogenasas , 17-Hidroxiesteroide Deshidrogenasas/genética
14.
Mol Biol Rep ; 50(12): 9833-9843, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37843712

RESUMEN

BACKGROUND: Adipose tissue hypoxia plays a crucial role in the development of chronic low-grade systemic inflammation which has been associated with the pathogenesis of obesity-related diseases. Myricetin is a natural compound present in numerous plant-based foods with presumed anti-inflammatory and beneficial health effects. The impact of this flavonoid on hypoxia-induced expression of inflammatory adipokines and hypoxia-regulated pathways is unknown so far and has been addressed in the present study. METHODS: Differentiated human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes were cultured with or without myricetin under normoxic and hypoxic conditions for varying time periods. The effect of hypoxia and myricetin on the expression of the investigated adipokines was measured by real-time RT-PCR. Western blot analysis was used for the detection of transcription factors involved in hypoxia-regulated pathways. RESULTS: Myricetin interfered in the hypoxia-induced regulation of adipokines and the underlying pathways, which are involved in transmitting the inflammatory response. It strongly repressed hypoxia-induced expression of apelin, leptin, chemerin, asprosin, and DPP-4 and HIF-1α accumulation in the nucleus was diminished. Furthermore, the activation of the key regulators in the inflammatory response NF-κB, Akt, and CREB was suppressed by myricetin under hypoxic conditions. Myricetin also decreased hypoxia-induced accumulation of the pro-tumorigenic transcription factors Snail and Slug in the nucleus. CONCLUSION: Taken together, our results indicated that myricetin regulated hypoxia-induced expression of adipokines and hypoxia-regulated pathways in human adipocytes. Our study therefore provided evidence of the anti-inflammatory effects of myricetin in hypoxia-treated human adipocytes.


Asunto(s)
Adipocitos , Hipoxia , Humanos , Hipoxia de la Célula , Adipocitos/metabolismo , Hipoxia/complicaciones , Hipoxia/metabolismo , Adipoquinas/metabolismo , Flavonoides/farmacología , Flavonoides/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Antiinflamatorios/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo
15.
bioRxiv ; 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37732278

RESUMEN

BACKGROUND: Excess fat in the abdomen is a sexually dimorphic risk factor for cardio-metabolic disease. The relative storage between abdominal and lower-body subcutaneous adipose tissue depots is approximated by the waist-to-hip ratio adjusted for body mass index (WHRadjBMI). Genome-wide association studies (GWAS) identified 346 loci near 495 genes associated with WHRadjBMI. Most of these genes have unknown roles in fat distribution, but many are expressed and putatively act in adipose tissue. We aimed to identify novel sex- and depot-specific drivers of WHRadjBMI using a systems genetics approach. METHODS: We used two independent cohorts of adipose tissue gene expression with 362 - 444 males and 147 - 219 females, primarily of European ancestry. We constructed sex- and depot- specific Bayesian networks to model the gene-gene interactions from 8,492 adipose tissue genes. Key driver analysis identified genes that, in silico and putatively in vitro, regulate many others, including the 495 WHRadjBMI GWAS genes. Key driver gene function was determined by perturbing their expression in human subcutaneous pre-adipocytes using lenti-virus or siRNA. RESULTS: 51 - 119 key drivers in each network were replicated in both cohorts. We used single-cell expression data to select replicated key drivers expressed in adipocyte precursors and mature adipocytes, prioritized genes which have not been previously studied in adipose tissue, and used public human and mouse data to nominate 53 novel key driver genes (10 - 21 from each network) that may regulate fat distribution by altering adipocyte function. In other cell types, 23 of these genes are found in crucial adipocyte pathways: Wnt signaling or mitochondrial function. We selected seven genes whose expression is highly correlated with WHRadjBMI to further study their effects on adipogenesis/Wnt signaling (ANAPC2, PSME3, RSPO1, TYRO3) or mitochondrial function (C1QTNF3, MIGA1, PSME3, UBR1).Adipogenesis was inhibited in cells overexpressing ANAPC2 and RSPO1 compared to controls. RSPO1 results are consistent with a positive correlation between gene expression in the subcutaneous depot and WHRadjBMI, therefore lower relative storage in the subcutaneous depot. RSPO1 inhibited adipogenesis by increasing ß-catenin activation and Wnt-related transcription, thus repressing PPARG and CEBPA. PSME3 overexpression led to more adipogenesis than controls. In differentiated adipocytes, MIGA1 and UBR1 downregulation led to mitochondrial dysfunction, with lower oxygen consumption than controls; MIGA1 knockdown also lowered UCP1 expression. SUMMARY: ANAPC2, MIGA1, PSME3, RSPO1, and UBR1 affect adipocyte function and may drive body fat distribution.

16.
EMBO Rep ; 24(10): e57600, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37671834

RESUMEN

Adipocytes are critical regulators of metabolism and energy balance. While white adipocyte dysfunction is a hallmark of obesity-associated disorders, thermogenic adipocytes are linked to cardiometabolic health. As adipocytes dynamically adapt to environmental cues by functionally switching between white and thermogenic phenotypes, a molecular understanding of this plasticity could help improving metabolism. Here, we show that the lncRNA Apoptosis associated transcript in bladder cancer (AATBC) is a human-specific regulator of adipocyte plasticity. Comparing transcriptional profiles of human adipose tissues and cultured adipocytes we discovered that AATBC was enriched in thermogenic conditions. Using primary and immortalized human adipocytes we found that AATBC enhanced the thermogenic phenotype, which was linked to increased respiration and a more fragmented mitochondrial network. Expression of AATBC in adipose tissue of mice led to lower plasma leptin levels. Interestingly, this association was also present in human subjects, as AATBC in adipose tissue was inversely correlated with plasma leptin levels, BMI, and other measures of metabolic health. In conclusion, AATBC is a novel obesity-linked regulator of adipocyte plasticity and mitochondrial function in humans.

17.
Ital J Pediatr ; 49(1): 98, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37580732

RESUMEN

BACKGROUND: Shwachman-Diamond syndrome (SDS) is a rare congenital disorder caused by mutations in the SBDS gene and characterized by exocrine pancreatic deficiency, hematologic dysfunction, and skeletal growth failure. Although the hematologic features and characteristics of the somatic disorders commonly associated with SDS are well known, emerging data from case reports and patient registries suggest that SDS may also be associated with an increased risk of diabetes mellitus. However, currently available data on SDS-associated diabetes are limited and do not allow conclusions regarding prevalence and incidence rates, clinical course, and outcomes. CASE PRESENTATION: Here we report the case of a 5-year-old girl with SDS who underwent bone marrow transplantation at the age of 3 months and developed autoantibody-positive type 1 diabetes mellitus at the age of 1.8 years. The manifestation and course of diabetes development were mild, complicated by concurrent spontaneous episodes of hypoglycemia even before the onset of antidiabetic treatment. Currently, adequate metabolic control can be achieved by dietary intervention. CONCLUSIONS: Considering that the SBDS protein regulates mitosis and ribosomal biosynthesis and that its suppression may cause immunologic instability and chronic inflammation, this case provides insight into the phenotype of rare Shwachman-Diamond syndrome-associated diabetes mellitus, which may be characterized by significant age-dependent differences in clinical course.


Asunto(s)
Enfermedades de la Médula Ósea , Diabetes Mellitus Tipo 1 , Insuficiencia Pancreática Exocrina , Lipomatosis , Humanos , Síndrome de Shwachman-Diamond , Insuficiencia Pancreática Exocrina/complicaciones , Insuficiencia Pancreática Exocrina/diagnóstico , Insuficiencia Pancreática Exocrina/genética , Lipomatosis/complicaciones , Lipomatosis/diagnóstico , Lipomatosis/genética , Enfermedades de la Médula Ósea/complicaciones , Enfermedades de la Médula Ósea/diagnóstico , Enfermedades de la Médula Ósea/terapia , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/genética , Progresión de la Enfermedad
18.
Res Sq ; 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37398165

RESUMEN

Mitochondrial dysfunction is a characteristic trait of human and rodent obesity, insulin resistance, and fatty liver disease. Here we report that mitochondria undergo fragmentation and reduced oxidative capacity specifically in inguinal white adipose tissue after feeding mice high fat diet (HFD) by a process dependent on the small GTPase RalA. RalA expression and activity are increased in white adipocytes from mice fed HFD. Targeted deletion of Rala in white adipocytes prevents the obesity-induced fragmentation of mitochondria and produces mice resistant to HFD-induced weight gain via increased fatty acid oxidation. As a result, these mice also exhibit improved glucose tolerance and liver function. In vitro mechanistic studies revealed that RalA suppresses mitochondrial oxidative function in adipocytes by increasing fission through reversing the protein kinase A-catalyzed inhibitory Ser637phosphorylation of the mitochondrial fission protein Drp1. Active RalA recruits protein phosphatase 2A (PP2Aa) to specifically dephosphorylate this inhibitory site on Drp1, activating the protein, thus increasing mitochondrial fission. Adipose tissue expression of the human homolog of Drp1, DNML1, is positively correlated with obesity and insulin resistance in patients. Thus, chronic activation of RalA plays a key role in repressing energy expenditure in obese adipose tissue by shifting the balance of mitochondrial dynamics towards excessive fission, contributing to weight gain and related metabolic dysfunction.

19.
Pharmaceutics ; 15(7)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37514169

RESUMEN

Obesity and type 2 diabetes are major health burdens for which no effective therapy is available today. One treatment strategy could be to balance the metabolic functions of adipose tissue by regulating gene expressions using miRNAs. Here, we have loaded two anti-adipogenic miRNAs (miR26a and miR27a) into a pegylated lipid nanoparticle (PEG-LNP) formulation by a single-step microfluidic-assisted synthesis step. For the miRNA-loaded LNPs, the following system properties were determined: particle size, zeta potential, miRNA complexation efficiency, and cytotoxicity. We have used a human preadipocyte cell line to address the transfection efficiency and biological effects of the miRNA candidates at the gene and protein level. Our findings revealed that the upregulation of miR27a in preadipocytes inhibits adipogenesis by the downregulation of PPARγ and the reduction of lipid droplet formation. In contrast, miR26a transfection in adipocytes induced white adipocyte browning detected as the upregulation of uncoupling protein 1 (UCP1) as a marker of non-shivering thermogenesis. We conclude that the selective delivery of miRNAs by PEG-LNPs to adipocytes could offer new perspectives for the treatment of obesity and related metabolic diseases.

20.
Biomolecules ; 13(7)2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37509065

RESUMEN

Inflammation of the adipose tissue contributes to the onset and progression of several chronic obesity-related diseases. The two most important lipophilic diterpenoid compounds found in the root of Salvia milthorrhiza Bunge (also called Danshen), tanshinone IIA (TIIA) and cryptotanshinone (CRY), have many favorable pharmacological effects. However, their roles in obesity-associated adipocyte inflammation and related sub-networks have not been fully elucidated. In the present study, we investigated the gene, miRNAs and protein expression profile of prototypical obesity-associated dysfunction markers in inflamed human adipocytes treated with TIIA and CRY. The results showed that TIIA and CRY prevented tumor necrosis factor (TNF)-α induced inflammatory response in adipocytes, by counter-regulating the pattern of secreted cytokines/chemokines associated with adipocyte inflammation (CCL2/MCP-1, CXCL10/IP-10, CCL5/RANTES, CXCL1/GRO-α, IL-6, IL-8, MIF and PAI-1/Serpin E1) via the modulation of gene expression (as demonstrated for CCL2/MCP-1, CXCL10/IP-10, CCL5/RANTES, CXCL1/GRO-α, and IL-8), as well as related miRNA expression (miR-126-3p, miR-223-3p, miR-124-3p, miR-155-5p, and miR-132-3p), and by attenuating monocyte recruitment. This is the first demonstration of a beneficial effect by TIIA and CRY on adipocyte dysfunction associated with obesity development and complications, offering a new outlook for the prevention and/or treatment of metabolic diseases.


Asunto(s)
Quimiocina CCL5 , MicroARNs , Humanos , Quimiocina CCL5/metabolismo , Quimiocina CXCL10/metabolismo , Interleucina-8/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Adipocitos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...