Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cancer Gene Ther ; 31(9): 1357-1379, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39039193

RESUMEN

Trk (NTRK) receptor and NTRK gene fusions are oncogenic drivers of a wide variety of tumors. Although Trk receptors are typically activated at the cell surface, signaling of constitutive active Trk and diverse intracellular NTRK fusion oncogenes is barely investigated. Here, we show that a high intracellular abundance is sufficient for neurotrophin-independent, constitutive activation of TrkB kinase domains. In HEK293 cells, constitutive active TrkB kinase and an intracellular NTRK2-fusion oncogene (SQSTM1-NTRK2) reduced actin filopodia dynamics, phosphorylated FAK, and altered the cell morphology. Atypical cellular responses could be mimicked with the intracellular kinase domain, which did not activate the Trk-associated MAPK/ERK pathway. In glioblastoma-like U87MG cells, expression of TrkB or SQSTM1-NTRK2 reduced cell motility and caused drastic changes in the transcriptome. Clinically approved Trk inhibitors or mutating Y705 in the kinase domain, blocked the cellular effects and transcriptome changes. Atypical signaling was also seen for TrkA and TrkC. Moreover, hallmarks of atypical pTrk kinase were found in biopsies of Nestin-positive glioblastoma. Therefore, we suggest Western blot-like immunoassay screening of NTRK-related (brain) tumor biopsies to identify patients with atypical panTrk or phosphoTrk signals. Such patients could be candidates for treatment with NTRK inhibitors such as Larotrectinhib or Entrectinhib.


Asunto(s)
Proteínas de Fusión Oncogénica , Receptor trkB , Humanos , Receptor trkB/metabolismo , Receptor trkB/genética , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Línea Celular Tumoral , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Células HEK293 , Transducción de Señal , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Movimiento Celular/genética
2.
Front Mol Neurosci ; 13: 152, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32848605

RESUMEN

A GWAS study recently demonstrated single nucleotide polymorphisms (SNPs) in the human GLRB gene of individuals with a prevalence for agoraphobia. GLRB encodes the glycine receptor (GlyRs) ß subunit. The identified SNPs are localized within the gene flanking regions (3' and 5' UTRs) and intronic regions. It was suggested that these nucleotide polymorphisms modify GlyRs expression and phenotypic behavior in humans contributing to an anxiety phenotype as a mild form of hyperekplexia. Hyperekplexia is a human neuromotor disorder with massive startle phenotypes due to mutations in genes encoding GlyRs subunits. GLRA1 mutations have been more commonly observed than GLRB mutations. If an anxiety phenotype contributes to the hyperekplexia disease pattern has not been investigated yet. Here, we compared two mouse models harboring either a mutation in the murine Glra1 or Glrb gene with regard to anxiety and startle phenotypes. Homozygous spasmodic animals carrying a Glra1 point mutation (alanine 52 to serine) displayed abnormally enhanced startle responses. Moreover, spasmodic mice exhibited significant changes in fear-related behaviors (freezing, rearing and time spent on back) analyzed during the startle paradigm, even in a neutral context. Spastic mice exhibit reduced expression levels of the full-length GlyRs ß subunit due to aberrant splicing of the Glrb gene. Heterozygous animals appear normal without an obvious behavioral phenotype and thus might reflect the human situation analyzed in the GWAS study on agoraphobia and startle. In contrast to spasmodic mice, heterozygous spastic animals revealed no startle phenotype in a neutral as well as a conditioning context. Other mechanisms such as a modulatory function of the GlyRs ß subunit within glycinergic circuits in neuronal networks important for fear and fear-related behavior may exist. Possibly, in human additional changes in fear and fear-related circuits either due to gene-gene interactions e.g., with GLRA1 genes or epigenetic factors are necessary to create the agoraphobia and in particular the startle phenotype.

3.
Cell Calcium ; 58(2): 147-59, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25957620

RESUMEN

The endoplasmic reticulum (ER) acts as a dynamic calcium store and is involved in the generation of specific patterns of calcium signals in neurons. Calcium is mobilized from the ER store by multiple signaling cascades, and neuronal activity is known to regulate ER calcium levels. We asked how neurons regulate ER calcium levels in the resting state. Direct ER calcium imaging showed that ER calcium was lost quite rapidly from the somatic and dendritic ER when resting neurons were transiently kept under calcium-free conditions. Interestingly, free ER and free cytosolic calcium was lost continuously across the plasma membrane and was not held back in the cytosol, implying the presence of a prominent calcium influx mechanism to maintain ER calcium levels at rest. When neurons were treated acutely with inhibitors of store-operated calcium entry (SOCE), an immediate decline in ER calcium levels was observed. This continuous SOCE-like calcium entry did not require the activation of a signaling cascade, but was rather a steady-state phenomenon. The SOCE-like mechanism maintains medium-high ER calcium levels at rest and is essential for balanced resting calcium levels in the ER and cytosol.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Animales , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/química , Canales de Calcio/genética , Señalización del Calcio/efectos de los fármacos , Carboxilesterasa , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Citosol/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Imidazoles/farmacología , Inmunohistoquímica , Proteínas de la Membrana/metabolismo , Ratones , Microscopía Confocal , Proteína ORAI1 , Proteína ORAI2 , Reacción en Cadena en Tiempo Real de la Polimerasa
4.
Behav Brain Res ; 232(1): 148-58, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22516842

RESUMEN

The neurotoxin 6-hydroxydopamine (6-OHDA) is frequently used in animal models to mimic Parkinson's disease. Imaging studies describe hyperintense signalling in regions close to the site of the 6-OHDA injection in T2-weighted (T2w) magnetic resonance imaging (MRI). The nature of this hyperintense signal remains elusive and still is matter of discussion. Here we demonstrate hyperintense signalling in T2w MRI and decreased apparent diffusion coefficient (ADC) values following intraventricular injection of 6-OHDA. Moreover, we show decreased GFAP immunoreactivity in brain regions corresponding to the region revealing the hyperintense signalling, probably indicating a loss of astrocytes due to a toxic effect of 6-OHDA. In the striatum, where no hyperintense signalling in MRI was observed following intraventricular 6-OHDA injection, immunohistochemical and molecular analyses revealed an altered expression of the water channel aquaporin 4 and the emergence of vasogenic edema, indicated by an increased perivascular space. Moreover, a significant decrease of claudin-3 immunoreactivity was observed, implying alterations in the blood brain barrier. These findings indicate that intraventricular injection of 6-OHDA results (1) in effects close to the ventricles that can be detected as hyperintense signalling in T2w MRI accompanied by reduced ADC values and (2) in effects on brain regions not adjacent to the ventricles, where a disturbance of water homeostasis occurs. We clearly demonstrate that 6-OHDA leads to brain edema that in turn may affect the overall results of experiments (e.g. behavioral alterations). Therefore, when using 6-OHDA in Parkinson's models effects that are not mediated by degeneration of catecholaminergic neurons have to be considered.


Asunto(s)
Acuaporina 4/metabolismo , Química Encefálica/efectos de los fármacos , Encéfalo/patología , Claudinas/metabolismo , Cuerpo Estriado/metabolismo , Oxidopamina/farmacología , Simpaticolíticos/farmacología , Animales , Barrera Hematoencefálica/efectos de los fármacos , Western Blotting , Catecolaminas/metabolismo , Circulación Cerebrovascular/efectos de los fármacos , Claudina-3 , Cuerpo Estriado/irrigación sanguínea , Cuerpo Estriado/efectos de los fármacos , Gliosis/inducido químicamente , Gliosis/patología , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Imagen por Resonancia Magnética , Masculino , Microinyecciones , Actividad Motora/efectos de los fármacos , Desempeño Psicomotor/efectos de los fármacos , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Percepción Espacial/efectos de los fármacos
5.
Cell Tissue Res ; 342(2): 147-60, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20976472

RESUMEN

Reactive astrogliosis is the universal response to any brain insult. It is characterized by cellular hypertrophy, up-regulation of the astrocyte marker glial fibrillary acidic protein (GFAP), and proliferation. The source of these proliferating cells is under intense debate. Progenitor cells derived from the subventricular zone (SVZ), cells positive for chondroitin sulfate proteoglycan (NG2(+)), and de-differentiated astrocytes have been proposed as the origin of proliferating cells following injury. We have analyzed the effect of intraventricular-applied 6-hydroxydopamine (6-OHDA) on the proliferation and morphology of astrocytes in rat cortex and striatum by means of immunohistochemistry and confocal laser microscopy. At 4 days post-lesion, GFAP expression increased markedly. A subpopulation of the GFAP(+) cells co-expressed Ki-67, indicating that these cells were proliferating. To investigate whether these cells (1) arose from migrating SVZ progenitor cells, (2) derived from NG2(+) progenitor cells, or (3) de-differentiated from resident astrocytes, we studied the expression of the migration marker doublecortin (Dcx), the oligodendrocyte progenitor marker NG2, and the progenitor markers Nestin and Pax6. The proliferating Ki-67(+) cells co-expressed Nestin and Pax6, whereas no co-expression of Ki-67 with NG2 or the migration marker Dcx was observed. Thus, resident astrocytes de-differentiate, in response to the intraventricular application of 6-OHDA, to a phenotype resembling radial glia cells, which represent transient astrocyte precursors during development. An understanding of the mechanisms of the de-differentiation of mature astrocytes might be useful for designing new approaches to cell therapy in neurodegenerative diseases such as Parkinson's disease.


Asunto(s)
Adrenérgicos/farmacología , Astrocitos/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Neuroglía/efectos de los fármacos , Oxidopamina/farmacología , Animales , Astrocitos/patología , Biomarcadores/metabolismo , Desdiferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Corteza Cerebral/patología , Cuerpo Estriado/patología , Proteína Doblecortina , Proteína Ácida Fibrilar de la Glía/metabolismo , Inyecciones Intraventriculares , Antígeno Ki-67/metabolismo , Ratas , Ratas Sprague-Dawley
6.
Eur J Neurosci ; 28(11): 2173-82, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19046364

RESUMEN

Proliferation of astrocytes plays an essential role during ontogeny and in the adult brain, where it occurs following trauma and in inflammation and neurodegenerative diseases as well as in normal, healthy mammals. The cellular mechanisms underlying glial proliferation remain poorly understood. As dopamine is known to modulate proliferation in different cell populations, we investigated the effects of dopamine on the proliferation of striatal astrocytes in vitro. We found that dopamine reduced proliferation. As proliferation involves, among other things, a change in cell volume, which normally comes with water movement across the membrane, water channels might represent a molecular target of the dopamine effect. Therefore we studied the effect of dopamine on aquaporin 4 (AQP4) expression, the main aquaporin subtype expressed in glial cells, and observed a down-regulation of the AQP4-M23 isoform. This down-regulation was the cause of the dopamine-induced decrease in proliferation as knockdown of AQP4 using siRNA techniques mimicked the effects of dopamine on proliferation. Furthermore, stimulation of glial proliferation by basic fibroblast growth factor was also abolished by knocking down AQP4. In addition, blocking of AQP4 with 10 mum tetraethylammonium inhibited osmotically induced cell swelling and stimulation of glial cell proliferation by basic fibroblast growth factor. These results demonstrate a clear-cut involvement of AQP4 in the regulation of proliferation and implicate that modulation of AQP4 could be used therapeutically in the treatment of neurodegenerative diseases as well as in the regulation of reactive astrogliosis by preventing or reducing the glia scar formation, thus improving regeneration following ischemia or other trauma.


Asunto(s)
Acuaporina 4/genética , Astrocitos/metabolismo , Proliferación Celular/efectos de los fármacos , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Gliosis/metabolismo , Animales , Animales Recién Nacidos , Astrocitos/citología , Astrocitos/efectos de los fármacos , Células Cultivadas , Cuerpo Estriado/citología , Cuerpo Estriado/crecimiento & desarrollo , Dopamina/farmacología , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Factor 2 de Crecimiento de Fibroblastos/farmacología , Gliosis/tratamiento farmacológico , Gliosis/genética , Ratones , Ratones Endogámicos BALB C , Bloqueadores de los Canales de Potasio/farmacología , Interferencia de ARN , ARN Mensajero/efectos de los fármacos , ARN Mensajero/metabolismo , Tetraetilamonio/farmacología , Equilibrio Hidroelectrolítico/efectos de los fármacos , Equilibrio Hidroelectrolítico/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA