Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gut Microbes ; 15(1): 2154544, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36511640

RESUMEN

Intestinal microbiota and microbiota-derived metabolites play a key role in regulating the host physiology. Recently, we have identified a gut-bacterial metabolite, namely 5-hydroxyindole, as a potent stimulant of intestinal motility via its modulation of L-type voltage-gated calcium channels located on the intestinal smooth muscle cells. Dysregulation of L-type voltage-gated calcium channels is associated with various gastrointestinal motility disorders, including constipation, making L-type voltage-gated calcium channels an important target for drug development. Nonetheless, the majority of currently available drugs are associated with alteration of the gut microbiota. Using 16S rRNA sequencing this study shows that, when administered orally, 5-hydroxyindole has only marginal effects on the rat cecal microbiota. Molecular dynamics simulations propose potential-binding pockets of 5-hydroxyindole in the α1 subunit of the L-type voltage-gated calcium channels and when its stimulatory effect on the rat colonic contractility was compared to 16 different analogues, ex-vivo, 5-hydroxyindole stood as the most potent enhancer of the intestinal contractility. Overall, the present findings imply a potential role of microbiota-derived metabolites as candidate therapeutics for targeted treatment of slow intestinal motility-related disorders including constipation.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Ratas , Animales , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo L/farmacología , ARN Ribosómico 16S , Motilidad Gastrointestinal , Bacterias/genética , Bacterias/metabolismo , Estreñimiento/microbiología
2.
Gut Microbes ; 14(1): 1997296, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34978524

RESUMEN

The human gastrointestinal tract is home to trillions of microbes. Gut microbial communities have a significant regulatory role in the intestinal physiology, such as gut motility. Microbial effect on gut motility is often evoked by bioactive molecules from various sources, including microbial break down of carbohydrates, fibers or proteins. In turn, gut motility regulates the colonization within the microbial ecosystem. However, the underlying mechanisms of such regulation remain obscure. Deciphering the inter-regulatory mechanisms of the microbiota and bowel function is crucial for the prevention and treatment of gut dysmotility, a comorbidity associated with many diseases. In this review, we present an overview of the current knowledge on the impact of gut microbiota and its products on bowel motility. We discuss the currently available techniques employed to assess the changes in the intestinal motility. Further, we highlight the open challenges, and incorporate biophysical elements of microbes-motility interplay, in an attempt to lay the foundation for describing long-term impacts of microbial metabolite-induced changes in gut motility.


Asunto(s)
Bacterias/metabolismo , Microbioma Gastrointestinal , Motilidad Gastrointestinal , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/fisiología , Animales , Bacterias/clasificación , Bacterias/genética , Simulación por Computador , Humanos
3.
PLoS Biol ; 19(1): e3001070, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33481771

RESUMEN

Microbial conversion of dietary or drug substrates into small bioactive molecules represents a regulatory mechanism by which the gut microbiota alters intestinal physiology. Here, we show that a wide variety of gut bacteria can metabolize the dietary supplement and antidepressant 5-hydroxytryptophan (5-HTP) to 5-hydroxyindole (5-HI) via the tryptophanase (TnaA) enzyme. Oral administration of 5-HTP results in detection of 5-HI in fecal samples of healthy volunteers with interindividual variation. The production of 5-HI is inhibited upon pH reduction in in vitro studies. When administered orally in rats, 5-HI significantly accelerates the total gut transit time (TGTT). Deciphering the underlying mechanisms of action reveals that 5-HI accelerates gut contractility via activation of L-type calcium channels located on the colonic smooth muscle cells. Moreover, 5-HI stimulation of a cell line model of intestinal enterochromaffin cells results in significant increase in serotonin production. Together, our findings support a role for bacterial metabolism in altering gut motility and lay the foundation for microbiota-targeted interventions.


Asunto(s)
Bacterias/metabolismo , Canales de Calcio Tipo L/efectos de los fármacos , Motilidad Gastrointestinal/efectos de los fármacos , Indoles/metabolismo , Indoles/farmacología , 5-Hidroxitriptófano/metabolismo , Adulto , Animales , Canales de Calcio Tipo L/metabolismo , Heces/microbiología , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Motilidad Gastrointestinal/fisiología , Humanos , Activación del Canal Iónico/efectos de los fármacos , Masculino , Ratas , Adulto Joven
4.
Pharmaceuticals (Basel) ; 11(3)2018 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-29941795

RESUMEN

The human gastrointestinal tract is inhabited by trillions of commensal bacteria collectively known as the gut microbiota. Our recognition of the significance of the complex interaction between the microbiota, and its host has grown dramatically over the past years. A balanced microbial community is a key regulator of the immune response, and metabolism of dietary components, which in turn, modulates several brain processes impacting mood and behavior. Consequently, it is likely that disruptions within the composition of the microbiota would remotely affect the mental state of the host. Here, we discuss how intestinal bacteria and their metabolites can orchestrate gut-associated neuroimmune mechanisms that influence mood and behavior leading to depression. In particular, we focus on microbiota-triggered gut inflammation and its implications in shifting the tryptophan metabolism towards kynurenine biosynthesis while disrupting the serotonergic signaling. We further investigate the gaps to be bridged in this exciting field of research in order to clarify our understanding of the multifaceted crosstalk in the microbiota⁻gut⁻brain interphase, bringing about novel, microbiota-targeted therapeutics for mental illnesses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...