Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(17)2022 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-36081152

RESUMEN

Propulsive force is a determinant of swimming performance. Several methods have been proposed to estimate the propulsive force in human swimming; however, their practical use in coaching is limited. Herein, we propose a novel method for estimating the propulsive force generated by swimmers' hands using an inertial measurement unit (IMU) and pressure sensors. In Experiment 1, we use a hand model to examine the effect of a hand-mounted IMU on pressure around the hand model at several flow velocities and water flow directions. In Experiment 2, we compare the propulsive force estimated using the IMU and pressure sensors (FIMU) via an underwater motion-capture system and pressure sensors (FMocap). Five swimmers had markers, pressure sensors, and IMUs attached to their hands and performed front crawl swimming for 25 m twice at each of nine different swimming speeds. The results show that the hand-mounted IMU affects the resultant force; however, the effect of the hand-mounted IMU varies with the flow direction. The mean values of FMocap and FIMU are similar (19.59 ± 7.66 N and 19.36 ± 7.86 N, respectively; intraclass correlation coefficient(2,1) = 0.966), and their waveforms are similar (coefficient of multiple correlation = 0.99). These results indicate that the IMU can estimate the same level of propulsive force as an underwater motion-capture system.


Asunto(s)
Mano , Extremidad Superior , Fenómenos Biomecánicos , Humanos , Natación
2.
J Biomech ; 126: 110655, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34358902

RESUMEN

This study elucidated kinetic and kinematic changes between control and weighted vest sprinting with a load of 7% body mass. Fourteen male sprinters completed 60 m control and vest sprints over a long force platform system. Step-to-step ground reaction force and spatiotemporal variables were grouped, representing the initial acceleration (1st-4th steps), middle acceleration (5th-14th steps), later acceleration (15th step-step before maximum velocity reached) and maximum velocity (stride where maximum velocity reached) phase during each trial. Two-way ANOVA with post hoc Tukey HSD and a Cohen's d effect size with 95% confidence intervals elucidated the difference between trials and phases. Between control and vest trials the velocity decreased (3.41-3.78%) through trivial-small step length (1.95-2.72%) and frequency (0.87-1.54%) decreases. Vertical impulse increased (6.46-6.78%) through moderate support time increases (4.84-6.00%), coupled with no effective vertical mean force differences during the vest trial, compared to the control. There was no significant interaction between trials and phases. Therefore, although weighted vest trials did not increase vertical mean force production, vests did induce an increased vertical force application duration during the support phase step-to-step while supporting a larger total load (body mass plus vest mass).


Asunto(s)
Rendimiento Atlético , Carrera , Aceleración , Fenómenos Biomecánicos , Humanos , Masculino , Soporte de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA