Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 11(2): 1264-1272, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28135067

RESUMEN

Advances in TEM techniques have spurred a renewed interest in a wide variety of research fields. A rather recent track within these endeavors is the use of TEM for in situ imaging in liquids. In this article, we show the fabrication of a liquid cell for TEM observations which we call the nanocuvette. The structure consists of a nanohole film sandwiched by carbon films, sealing liquid in the holes. The hole film can be produced using a variety of materials, tailored for the desired application. Since the fabrication is based on self-assembly, it is both cheap and straightforward. Compared to previously reported liquid cells, this structure allows for thinner liquid layers with better controlled cell structures, making it possible to achieve a high resolution even at lower acceleration voltages and electron doses. We demonstrate a resolution corresponding to an information transfer up to ∼2 nm at 100 kV for molecular imaging. Apart from the advantages arising from the thin liquid layer, the nanocuvette also enables the possibility to study liquid-solid interfaces at the side walls of the nanoholes. We illustrate the possibilities of the nanocuvette by studying several model systems: electron beam induced growth dynamics of silver nanoparticles in salt solution, polymer deposition from solution, and imaging of nonstained antibodies in solution. Finally, we show how the inclusion of a plasmonically active gold layer in the nanocuvette structure enables optical confirmation of successful liquid encapsulation prior to TEM studies. The nanocuvette provides an easily fabricated and flexible platform which can help further the understanding of reactions, processes, and conformation of molecules and atoms in liquid environments.

2.
Nat Mater ; 14(12): 1236-44, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26343912

RESUMEN

Physicochemical properties of nanoparticles may depend on their size and shape and are traditionally assessed in ensemble-level experiments, which accordingly may be plagued by averaging effects. These effects can be eliminated in single-nanoparticle experiments. Using plasmonic nanospectroscopy, we present a comprehensive study of hydride formation thermodynamics in individual Pd nanocrystals of different size and shape, and find corresponding enthalpies and entropies to be nearly size- and shape-independent. The hysteresis observed is significantly wider than in bulk, with details depending on the specifics of individual nanoparticles. Generally, the absorption branch of the hysteresis loop is size-dependent in the sub-30 nm regime, whereas desorption is size- and shape-independent. The former is consistent with a coherent phase transition during hydride formation, influenced kinetically by the specifics of nucleation, whereas the latter implies that hydride decomposition either occurs incoherently or via different kinetic pathways.


Asunto(s)
Hidrógeno/química , Nanopartículas , Paladio/química , Termodinámica , Cinética , Análisis Espectral/métodos
3.
Nanoscale ; 7(25): 10963-9, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26059393

RESUMEN

Accurate and reliable hydrogen sensors are an important enabling technology for the large-scale introduction of hydrogen as a fuel or energy storage medium. As an example, in a hydrogen-powered fuel cell car of the type now introduced to the market, more than 15 hydrogen sensors are required for safe operation. To enable the long-term use of plasmonic sensors in this particular context, we introduce a concept for drift-correction based on light polarization utilizing symmetric sensor and sensing material nanoparticles arranged in a heterodimer. In this way the inert gold sensor element of the plasmonic dimer couples to a sensing-active palladium element if illuminated in the dimer-parallel polarization direction but not the perpendicular one. Thus the perpendicular polarization readout can be used to efficiently correct for drifts occurring due to changes of the sensor element itself or due to non-specific events like a temperature change. Furthermore, by the use of a polarizing beamsplitter, both polarization signals can be read out simultaneously making it possible to continuously correct the sensor response to eliminate long-term drift and ageing effects. Since our approach is generic, we also foresee its usefulness for other applications of nanoplasmonic sensors than hydrogen sensing.

4.
Nano Lett ; 15(5): 3563-70, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25915663

RESUMEN

The recent market introduction of hydrogen fuel cell cars and the prospect of a hydrogen economy have drastically accelerated the need for safe and accurate detection of hydrogen. In this Letter, we investigate the use of arrays of nanofabricated Pd-Au alloy nanoparticles as plasmonic optical hydrogen sensors. By increasing the amount of Au in the alloy nanoparticles up to 25 atom %, we are able to suppress the hysteresis between hydrogen absorption and desorption, thereby increasing the sensor accuracy to below 5% throughout the investigated 1 mbar to 1 bar hydrogen pressure range. Furthermore, we observe an 8-fold absolute sensitivity enhancement at low hydrogen pressures compared to sensors made of pure Pd, and an improved sensor response time to below one second within the 0-40 mbar pressure range, that is, below the flammability limit, by engineering the nanoparticle size.

5.
ACS Nano ; 8(12): 11925-40, 2014 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-25427244

RESUMEN

In this review, we discuss the evolution of localized surface plasmon resonance and surface plasmon resonance hydrogen sensors based on nanostructured metal hydrides, which has accelerated significantly during the past 5 years. We put particular focus on how, conceptually, plasmonic resonances can be used to study metal-hydrogen interactions at the nanoscale, both at the ensemble and at the single-nanoparticle level. Such efforts are motivated by a fundamental interest in understanding the role of nanosizing on metal hydride formation processes in the quest to develop efficient solid-state hydrogen storage materials with fast response times, reasonable thermodynamics, and acceptable long-term stability. Therefore, a brief introduction to the thermodynamics of metal hydride formation is also given. However, plasmonic hydrogen sensors not only are of academic interest as research tool in materials science but also are predicted to find more practical use as all-optical gas detectors in industrial and medical applications, as well as in a future hydrogen economy, where hydrogen is used as a carbon free energy carrier. Therefore, the wide range of different plasmonic hydrogen sensor designs already available is reviewed together with theoretical efforts to understand their fundamentals and optimize their performance in terms of sensitivity. In this context, we also highlight important challenges to be addressed in the future to take plasmonic hydrogen sensors from the laboratory to real applications in devices, including poisoning/deactivation of the active materials, sensor lifetime, and cross-sensitivity toward other gas species.

6.
Nanoscale ; 6(24): 14605-16, 2014 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-25208687

RESUMEN

The development of top-down nanofabrication techniques has opened many possibilities for the design and realization of complex devices based on single molecule phenomena such as e.g. single molecule electronic devices. These impressive achievements have been complemented by the fundamental understanding of self-assembly phenomena, leading to bottom-up strategies to obtain hybrid nanomaterials that can be used as building blocks for more complex structures. In this feature article we highlight some relevant published work as well as present new experimental results, illustrating the versatility of self-assembly methods combined with top-down fabrication techniques for solving relevant challenges in modern nanotechnology. We present recent developments on the use of hierarchical self-assembly methods to bridge the gap between sub-nanometer and micrometer length scales. By the use of non-covalent self-assembly methods, we show that we are able to control the positioning of nanoparticles on surfaces, and to address the deterministic assembly of nano-devices with potential applications in plasmonic sensing and single-molecule electronics experiments.

7.
Nano Lett ; 14(5): 2655-63, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24697350

RESUMEN

Plasmonic nanoantennas create locally strongly enhanced electric fields in so-called hot spots. To place a relevant nanoobject with high accuracy in such a hot spot is crucial to fully capitalize on the potential of nanoantennas to control, detect, and enhance processes at the nanoscale. With state-of-the-art nanofabrication, in particular when several materials are to be used, small gaps between antenna elements are sought, and large surface areas are to be patterned, this is a grand challenge. Here we introduce self-aligned, bottom-up and self-assembly based Shrinking-Hole Colloidal Lithography, which provides (i) unique control of the size and position of subsequently deposited particles forming the nanoantenna itself, and (ii) allows delivery of nanoobjects consisting of a material of choice to the antenna hot spot, all in a single lithography step and, if desired, uniformly covering several square centimeters of surface. We illustrate the functionality of SHCL nanoantenna arrangements by (i) an optical hydrogen sensor exploiting the polarization dependent sensitivity of an Au-Pd nanoantenna ensemble; and (ii) single particle hydrogen sensing with an Au dimer nanoantenna with a small Pd nanoparticle in the hot spot.

8.
Nano Lett ; 12(9): 4784-90, 2012 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-22916998

RESUMEN

The nonradiative decay of a localized surface plasmon through absorption of a captured photon and excitation of an energetic electron-hole pair is a potentially very effective way to enhance chemical reactions on metal nanoparticle surfaces, so far limited to Ag (and Au). Here we explore the possibility of efficient and spectrally widely tunable optical absorption engineering based on heterometallic optical nanoantennas. They consist of an optimized antenna element made of Au (or Ag) and a catalytically active second metallic element separated by a thin SiO(2) layer. Specifically, we find that stacked Au-SiO(2)-Pd nanodisk antennas exhibit pronounced local absorption enhancement in the catalytic Pd particle. The effect is caused by efficient power transfer from the Au disk, exhibiting a narrow low-loss resonance and acting as an antenna collecting photons, to the Pd disk due to strong coupling between the two. The Pd element thus acts as receiver that efficiently dissipates energy into electron-hole pairs owing to efficient coupling to intra and interband transitions. In fact, the energy transfer is found to be so effective that the absorption efficiency at a given wavelength can be enhanced up to 6 to 9 times, and the total absorption integrated over a wide spectral range (400-900 nm) up to 2-fold, depending on the antenna dimensions. This finding suggests a novel route toward highly efficient plasmon-enhanced catalysis on widely selectable catalytic metal particle surfaces not limited to the "classic" plasmonic metals Au and Ag.


Asunto(s)
Cristalización/métodos , Oro/química , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Paladio/química , Dióxido de Silicio/química , Resonancia por Plasmón de Superficie/métodos , Absorción , Luz , Ensayo de Materiales , Tamaño de la Partícula , Dispersión de Radiación
9.
J Phys Chem B ; 115(8): 1842-7, 2011 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-21299230

RESUMEN

Broad-band dielectric spectroscopy is a commonly used tool in the study of glass-forming liquids. The high sensitivity of the technique together with the wide range of probed time scales makes it a powerful method for investigating the relaxation spectra of liquids. One particularly important class of glass-forming liquids that is often studied using this technique consists of liquids dominated by hydrogen (H) bond interactions. When investigating such liquids, particular caution has to be taken during sample preparation due to their often highly hygroscopic nature. Water can easily be absorbed from the atmosphere, and dielectric spectroscopy is a very sensitive probe of such contamination due to the large dipole moment of water. Our knowledge concerning the effects of small quantities of water on the dielectric properties of these commonly investigated liquids is limited. We here demonstrate the effects due to the presence of small amounts of water on the dielectric response of a typical H-bonded model glass former, tripropylene glycol. We show how the relaxation processes present in the pure liquid are affected by addition of water, and we find that a characteristic water induced relaxation response is observed for water contents as low as 0.15 wt%. We stress the importance of careful purification of hygroscopic liquids before experiments and quantify what the effects are if such procedures are not undertaken.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...