Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 1049, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39183196

RESUMEN

Genetic risk modeling for dementia offers significant benefits, but studies based on real-world data, particularly for underrepresented populations, are limited. We employ an Elastic Net model for dementia risk prediction using single-nucleotide polymorphisms prioritized by functional genomic data from multiple neurodegenerative disease genome-wide association studies. We compare this model with APOE and polygenic risk score models across genetic ancestry groups (Hispanic Latino American sample: 610 patients with 126 cases; African American sample: 440 patients with 84 cases; East Asian American sample: 673 patients with 75 cases), using electronic health records from UCLA Health for discovery and the All of Us cohort for validation. Our model significantly outperforms other models across multiple ancestries, improving the area-under-precision-recall curve by 31-84% (Wilcoxon signed-rank test p-value <0.05) and the area-under-the-receiver-operating characteristic by 11-17% (DeLong test p-value <0.05) compared to the APOE and the polygenic risk score models. We identify shared and ancestry-specific risk genes and biological pathways, reinforcing and adding to existing knowledge. Our study highlights the benefits of integrating functional mapping, multiple neurodegenerative diseases, and machine learning for genetic risk models in diverse populations. Our findings hold potential for refining precision medicine strategies in dementia diagnosis.


Asunto(s)
Demencia , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Humanos , Demencia/genética , Demencia/epidemiología , Femenino , Masculino , Anciano , Modelos Genéticos , Herencia Multifactorial , Factores de Riesgo , Medición de Riesgo/métodos , Persona de Mediana Edad
2.
medRxiv ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38370649

RESUMEN

BACKGROUND: Genetic risk modeling for dementia offers significant benefits, but studies based on real-world data, particularly for underrepresented populations, are limited. METHODS: We employed an Elastic Net model for dementia risk prediction using single-nucleotide polymorphisms prioritized by functional genomic data from multiple neurodegenerative disease genome-wide association studies. We compared this model with APOE and polygenic risk score models across genetic ancestry groups, using electronic health records from UCLA Health for discovery and All of Us cohort for validation. RESULTS: Our model significantly outperforms other models across multiple ancestries, improving the area-under-precision-recall curve by 21-61% and the area-under-the-receiver-operating characteristic by 10-21% compared to the APOE and the polygenic risk score models. We identified shared and ancestry-specific risk genes and biological pathways, reinforcing and adding to existing knowledge. CONCLUSIONS: Our study highlights benefits of integrating functional mapping, multiple neurodegenerative diseases, and machine learning for genetic risk models in diverse populations. Our findings hold potential for refining precision medicine strategies in dementia diagnosis.

3.
Res Sq ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38410460

RESUMEN

BACKGROUND: Genetic risk modeling for dementia offers significant benefits, but studies based on real-world data, particularly for underrepresented populations, are limited. METHODS: We employed an Elastic Net model for dementia risk prediction using single-nucleotide polymorphisms prioritized by functional genomic data from multiple neurodegenerative disease genome-wide association studies. We compared this model with APOE and polygenic risk score models across genetic ancestry groups, using electronic health records from UCLA Health for discovery and All of Us cohort for validation. RESULTS: Our model significantly outperforms other models across multiple ancestries, improving the area-under-precision-recall curve by 21-61% and the area-under-the-receiver-operating characteristic by 10-21% compared to the APOEand the polygenic risk score models. We identified shared and ancestry-specific risk genes and biological pathways, reinforcing and adding to existing knowledge. CONCLUSIONS: Our study highlights benefits of integrating functional mapping, multiple neurodegenerative diseases, and machine learning for genetic risk models in diverse populations. Our findings hold potential for refining precision medicine strategies in dementia diagnosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA