Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(17): 176701, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38728732

RESUMEN

Altermagnetism is a recently identified magnetic symmetry class combining characteristics of conventional collinear ferromagnets and antiferromagnets, that were regarded as mutually exclusive, and enabling phenomena and functionalities unparalleled in either of the two traditional elementary magnetic classes. In this work we use symmetry, ab initio theory, and experiments to explore x-ray magnetic circular dichroism (XMCD) in the altermagnetic class. As a representative material for our XMCD study we choose α-MnTe with compensated antiparallel magnetic order in which an anomalous Hall effect has been already demonstrated. We predict and experimentally confirm a characteristic XMCD line shape for compensated moments lying in a plane perpendicular to the light propagation vector. Our results highlight the distinct phenomenology in altermagnets of this time-reversal symmetry breaking response, and its potential utility for element-specific spectroscopy and microscopy.

2.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38446000

RESUMEN

The design, manufacture, and characterization of an inexpensive, temperature-controlled vacuum chamber with millikelvin stability for electrical transport measurements at and near room temperature is reported. A commercially available Peltier device and a high-precision temperature controller are used to actively heat and cool the sample space. The system was designed to minimize thermal fluctuations in spintronic and semiconductor transport measurements, but the general principle is relevant to a wide range of electrical measurement applications. The main issues overcome are the mounting of a sample with a path of high thermal conductivity through to the Peltier device and the heat sinking of the said Peltier device inside a vacuum. A copper slug is used as the mount for a sample, and a large copper block is used as a thermal feedthrough before a passive heat sink is used to cool this block. The Peltier device provides 20 W of heating and cooling power, achieving a maximum range of 30 K below and 40 K above the ambient temperature. The temperature stability is within 5 mK at all set points with an even better performance above the ambient temperature. A vacuum pressure of 10-8 hPa is achievable. As a demonstration, we present experimental results from current-induced electrical switching of a CuMnAs thin film. Transport measurements with and without the Peltier control emphasize the importance of a constant temperature in these applications. The thermal lag between the sample space measurement and the sample itself is observed through magnetoresistance values measured during a temperature sweep.

3.
Nature ; 626(7999): 517-522, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38356066

RESUMEN

Lifted Kramers spin degeneracy (LKSD) has been among the central topics of condensed-matter physics since the dawn of the band theory of solids1,2. It underpins established practical applications as well as current frontier research, ranging from magnetic-memory technology3-7 to topological quantum matter8-14. Traditionally, LKSD has been considered to originate from two possible internal symmetry-breaking mechanisms. The first refers to time-reversal symmetry breaking by magnetization of ferromagnets and tends to be strong because of the non-relativistic exchange origin15. The second applies to crystals with broken inversion symmetry and tends to be comparatively weaker, as it originates from the relativistic spin-orbit coupling (SOC)16-19. A recent theory work based on spin-symmetry classification has identified an unconventional magnetic phase, dubbed altermagnetic20,21, that allows for LKSD without net magnetization and inversion-symmetry breaking. Here we provide the confirmation using photoemission spectroscopy and ab initio calculations. We identify two distinct unconventional mechanisms of LKSD generated by the altermagnetic phase of centrosymmetric MnTe with vanishing net magnetization20-23. Our observation of the altermagnetic LKSD can have broad consequences in magnetism. It motivates exploration and exploitation of the unconventional nature of this magnetic phase in an extended family of materials, ranging from insulators and semiconductors to metals and superconductors20,21, that have been either identified recently or perceived for many decades as conventional antiferromagnets21,24,25.

4.
Nat Nanotechnol ; 18(8): 849-853, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37157021

RESUMEN

Topologically protected magnetic textures are promising candidates for information carriers in future memory devices, as they can be efficiently propelled at very high velocities using current-induced spin torques. These textures-nanoscale whirls in the magnetic order-include skyrmions, half-skyrmions (merons) and their antiparticles. Antiferromagnets have been shown to host versions of these textures that have high potential for terahertz dynamics, deflection-free motion and improved size scaling due to the absence of stray field. Here we show that topological spin textures, merons and antimerons, can be generated at room temperature and reversibly moved using electrical pulses in thin-film CuMnAs, a semimetallic antiferromagnet that is a testbed system for spintronic applications. The merons and antimerons are localized on 180° domain walls, and move in the direction of the current pulses. The electrical generation and manipulation of antiferromagnetic merons is a crucial step towards realizing the full potential of antiferromagnetic thin films as active components in high-density, high-speed magnetic memory devices.

5.
Nat Commun ; 9(1): 4686, 2018 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-30409971

RESUMEN

Antiferromagnets are enriching spintronics research by many favorable properties that include insensitivity to magnetic fields, neuromorphic memory characteristics, and ultra-fast spin dynamics. Designing memory devices with electrical writing and reading is one of the central topics of antiferromagnetic spintronics. So far, such a combined functionality has been demonstrated via 90° reorientations of the Néel vector generated by the current-induced spin orbit torque and sensed by the linear-response anisotropic magnetoresistance. Here we show that in the same antiferromagnetic CuMnAs films as used in these earlier experiments we can also control 180° Néel vector reversals by switching the polarity of the writing current. Moreover, the two stable states with opposite Néel vector orientations in this collinear antiferromagnet can be electrically distinguished by measuring a second-order magnetoresistance effect. We discuss the general magnetic point group symmetries allowing for this electrical readout effect and its specific microscopic origin in CuMnAs.

6.
Sci Rep ; 7(1): 11147, 2017 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-28894219

RESUMEN

Using x-ray magnetic circular and linear dichroism techniques, we demonstrate a collinear exchange coupling between an epitaxial antiferromagnet, tetragonal CuMnAs, and an Fe surface layer. A small uncompensated Mn magnetic moment is observed which is antiparallel to the Fe magnetization. The staggered magnetization of the 5 nm thick CuMnAs layer is rotatable under small magnetic fields, due to the interlayer exchange coupling. This allows us to obtain the x-ray magnetic linear dichroism spectra for different crystalline orientations of CuMnAs in the (001) plane. This is a key parameter for enabling the understanding of domain structures in CuMnAs imaged using x-ray magnetic linear dichroism microscopy techniques.

7.
Nat Commun ; 8: 15434, 2017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-28524862

RESUMEN

Antiferromagnets offer a unique combination of properties including the radiation and magnetic field hardness, the absence of stray magnetic fields, and the spin-dynamics frequency scale in terahertz. Recent experiments have demonstrated that relativistic spin-orbit torques can provide the means for an efficient electric control of antiferromagnetic moments. Here we show that elementary-shape memory cells fabricated from a single-layer antiferromagnet CuMnAs deposited on a III-V or Si substrate have deterministic multi-level switching characteristics. They allow for counting and recording thousands of input pulses and responding to pulses of lengths downscaled to hundreds of picoseconds. To demonstrate the compatibility with common microelectronic circuitry, we implemented the antiferromagnetic bit cell in a standard printed circuit board managed and powered at ambient conditions by a computer via a USB interface. Our results open a path towards specialized embedded memory-logic applications and ultra-fast components based on antiferromagnets.

8.
Phys Rev Lett ; 118(5): 057701, 2017 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-28211721

RESUMEN

The magnetic order in antiferromagnetic materials is hard to control with external magnetic fields. Using x-ray magnetic linear dichroism microscopy, we show that staggered effective fields generated by electrical current can induce modification of the antiferromagnetic domain structure in microdevices fabricated from a tetragonal CuMnAs thin film. A clear correlation between the average domain orientation and the anisotropy of the electrical resistance is demonstrated, with both showing reproducible switching in response to orthogonally applied current pulses. However, the behavior is inhomogeneous at the submicron level, highlighting the complex nature of the switching process in multidomain antiferromagnetic films.

9.
Nat Nanotechnol ; 11(3): 231-41, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26936817

RESUMEN

Antiferromagnetic materials are internally magnetic, but the direction of their ordered microscopic moments alternates between individual atomic sites. The resulting zero net magnetic moment makes magnetism in antiferromagnets externally invisible. This implies that information stored in antiferromagnetic moments would be invisible to common magnetic probes, insensitive to disturbing magnetic fields, and the antiferromagnetic element would not magnetically affect its neighbours, regardless of how densely the elements are arranged in the device. The intrinsic high frequencies of antiferromagnetic dynamics represent another property that makes antiferromagnets distinct from ferromagnets. Among the outstanding questions is how to manipulate and detect the magnetic state of an antiferromagnet efficiently. In this Review we focus on recent works that have addressed this question. The field of antiferromagnetic spintronics can also be viewed from the general perspectives of spin transport, magnetic textures and dynamics, and materials research. We briefly mention this broader context, together with an outlook of future research and applications of antiferromagnetic spintronics.

10.
Science ; 351(6273): 587-90, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26841431

RESUMEN

Antiferromagnets are hard to control by external magnetic fields because of the alternating directions of magnetic moments on individual atoms and the resulting zero net magnetization. However, relativistic quantum mechanics allows for generating current-induced internal fields whose sign alternates with the periodicity of the antiferromagnetic lattice. Using these fields, which couple strongly to the antiferromagnetic order, we demonstrate room-temperature electrical switching between stable configurations in antiferromagnetic CuMnAs thin-film devices by applied current with magnitudes of order 10(6) ampere per square centimeter. Electrical writing is combined in our solid-state memory with electrical readout and the stored magnetic state is insensitive to and produces no external magnetic field perturbations, which illustrates the unique merits of antiferromagnets for spintronics.

11.
Sci Rep ; 5: 17079, 2015 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-26602978

RESUMEN

Tetragonal CuMnAs is an antiferromagnetic material with favourable properties for applications in spintronics. Using a combination of neutron diffraction and x-ray magnetic linear dichroism, we determine the spin axis and magnetic structure in tetragonal CuMnAs, and reveal the presence of an interfacial uniaxial magnetic anisotropy. From the temperature-dependence of the neutron diffraction intensities, the Néel temperature is shown to be (480 ± 5) K. Ab initio calculations indicate a weak anisotropy in the (ab) plane for bulk crystals, with a large anisotropy energy barrier between in-plane and perpendicular-to-plane directions.

12.
Nat Mater ; 13(4): 367-74, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24464243

RESUMEN

The bistability of ordered spin states in ferromagnets provides the basis for magnetic memory functionality. The latest generation of magnetic random access memories rely on an efficient approach in which magnetic fields are replaced by electrical means for writing and reading the information in ferromagnets. This concept may eventually reduce the sensitivity of ferromagnets to magnetic field perturbations to being a weakness for data retention and the ferromagnetic stray fields to an obstacle for high-density memory integration. Here we report a room-temperature bistable antiferromagnetic (AFM) memory that produces negligible stray fields and is insensitive to strong magnetic fields. We use a resistor made of a FeRh AFM, which orders ferromagnetically roughly 100 K above room temperature, and therefore allows us to set different collective directions for the Fe moments by applied magnetic field. On cooling to room temperature, AFM order sets in with the direction of the AFM moments predetermined by the field and moment direction in the high-temperature ferromagnetic state. For electrical reading, we use an AFM analogue of the anisotropic magnetoresistance. Our microscopic theory modelling confirms that this archetypical spintronic effect, discovered more than 150 years ago in ferromagnets, is also present in AFMs. Our work demonstrates the feasibility of fabricating room-temperature spintronic memories with AFMs, which in turn expands the base of available magnetic materials for devices with properties that cannot be achieved with ferromagnets.

13.
Rev Sci Instrum ; 84(10): 103902, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24182124

RESUMEN

We report on a systematic study of the stress transferred from an electromechanical piezo-stack into GaAs wafers under a wide variety of experimental conditions. We show that the strains in the semiconductor lattice, which were monitored in situ by means of X-ray diffraction, are strongly dependent on both the wafer thickness and on the selection of the glue which is used to bond the wafer to the piezoelectric actuator. We have identified an optimal set of parameters that reproducibly transfers the largest distortions at room temperature. We have studied strains produced not only by the frequently used uniaxial piezostressors but also by the biaxial ones which replicate the routinely performed experiments using substrate-induced strains but with the advantage of a continuously tunable lattice distortion. The time evolution of the strain response and the sample tilting and/or bending are also analyzed and discussed.

14.
Nat Commun ; 4: 2322, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23959149

RESUMEN

Recent studies have demonstrated the potential of antiferromagnets as the active component in spintronic devices. This is in contrast to their current passive role as pinning layers in hard disk read heads and magnetic memories. Here we report the epitaxial growth of a new high-temperature antiferromagnetic material, tetragonal CuMnAs, which exhibits excellent crystal quality, chemical order and compatibility with existing semiconductor technologies. We demonstrate its growth on the III-V semiconductors GaAs and GaP, and show that the structure is also lattice matched to Si. Neutron diffraction shows collinear antiferromagnetic order with a high Néel temperature. Combined with our demonstration of room-temperature-exchange coupling in a CuMnAs/Fe bilayer, we conclude that tetragonal CuMnAs films are suitable candidate materials for antiferromagnetic spintronics.

15.
Sci Rep ; 3: 2220, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23860685

RESUMEN

Multiferroic composite materials, consisting of coupled ferromagnetic and piezoelectric phases, are of great importance in the drive towards creating faster, smaller and more energy efficient devices for information and communications technologies. Such devices require thin ferromagnetic films with large magnetostriction and narrow microwave resonance linewidths. Both properties are often degraded, compared to bulk materials, due to structural imperfections and interface effects in the thin films. We report the development of epitaxial thin films of Galfenol (Fe81Ga19) with magnetostriction as large as the best reported values for bulk material. This allows the magnetic anisotropy and microwave resonant frequency to be tuned by voltage-induced strain, with a larger magnetoelectric response and a narrower linewidth than any previously reported Galfenol thin films. The combination of these properties make epitaxial thin films excellent candidates for developing tunable devices for magnetic information storage, processing and microwave communications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...