Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(3): e17216, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38429628

RESUMEN

Soil microbial diversity mediates a wide range of key processes and ecosystem services influencing planetary health. Our knowledge of microbial biogeography patterns, spatial drivers and human impacts at the continental scale remains limited. Here, we reveal the drivers of bacterial and fungal community distribution in Australian topsoils using 1384 soil samples from diverse bioregions. Our findings highlight that climate factors, particularly precipitation and temperature, along with soil properties, are the primary drivers of topsoil microbial biogeography. Using random forest machine-learning models, we generated high-resolution maps of soil bacteria and fungi across continental Australia. The maps revealed microbial hotspots, for example, the eastern coast, southeastern coast, and west coast were dominated by Proteobacteria and Acidobacteria. Fungal distribution is strongly influenced by precipitation, with Ascomycota dominating the central region. This study also demonstrated the impact of human modification on the underground microbial community at the continental scale, which significantly increased the relative abundance of Proteobacteria and Ascomycota, but decreased Chloroflexi and Basidiomycota. The variations in microbial phyla could be attributed to distinct responses to altered environmental factors after human modifications. This study provides insights into the biogeography of soil microbiota, valuable for regional soil biodiversity assessments and monitoring microbial responses to global changes.


Asunto(s)
Microbiota , Micobioma , Humanos , Efectos Antropogénicos , Australia , Bacterias , Proteobacteria , Suelo
3.
Sci Data ; 10(1): 181, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37002235

RESUMEN

We introduce a new dataset of high-resolution gridded total soil organic carbon content data produced at 30 m × 30 m and 90 m × 90 m resolutions across Australia. For each product resolution, the dataset consists of six maps of soil organic carbon content along with an estimate of the uncertainty represented by the 90% prediction interval. Soil organic carbon maps were produced up to a depth of 200 cm, for six intervals: 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm and 100-200 cm. The maps were obtained through interpolation of 90,025 depth-harmonized organic carbon measurements using quantile regression forest and a large set of environmental covariates. Validation with 10-fold cross-validation showed that all six maps had relatively small errors and that prediction uncertainty was adequately estimated. The soil carbon maps provide a new baseline from which change in future carbon stocks can be monitored and the influence of climate change, land management, and greenhouse gas offset can be assessed.

4.
PeerJ ; 8: e9558, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32821535

RESUMEN

River discharges are often predicted based on a calibrated rainfall-runoff model. The major sources of uncertainty, namely input, parameter and model structural uncertainty must all be taken into account to obtain realistic estimates of the accuracy of discharge predictions. Over the past years, Bayesian calibration has emerged as a suitable method for quantifying uncertainty in model parameters and model structure, where the latter is usually modelled by an additive or multiplicative stochastic term. Recently, much work has also been done to include input uncertainty in the Bayesian framework. However, the use of geostatistical methods for characterizing the prior distribution of the catchment rainfall is underexplored, particularly in combination with assessments of the influence of increasing or decreasing rain gauge network density on discharge prediction accuracy. In this article we integrate geostatistics and Bayesian calibration to analyze the effect of rain gauge density on river discharge prediction accuracy. We calibrated the HBV hydrological model while accounting for input, initial state, model parameter and model structural uncertainty, and also taking uncertainties in the discharge measurements into account. Results for the Thur basin in Switzerland showed that model parameter uncertainty was the main contributor to the joint posterior uncertainty. We also showed that a low rain gauge density is enough for the Bayesian calibration, and that increasing the number of rain gauges improved model prediction until reaching a density of one gauge per 340 km2. While the optimal rain gauge density is case-study specific, we make recommendations on how to handle input uncertainty in Bayesian calibration for river discharge prediction and present the methodology that may be used to carry out such experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...