Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38617353

RESUMEN

Centrosomes are the principal microtubule-organizing centers of the cell and play an essential role in mitotic spindle function. Centrosome biogenesis is achieved by strict control of protein acquisition and phosphorylation prior to mitosis. Defects in this process promote fragmentation of pericentriolar material culminating in multipolar spindles and chromosome missegregation. Centriolar satellites, membrane-less aggrupations of proteins involved in the trafficking of proteins toward and away from the centrosome, are thought to contribute to centrosome biogenesis. Here we show that the microtubule plus-end directed kinesin motor Kif9 localizes to centriolar satellites and regulates their pericentrosomal localization during interphase. Lack of Kif9 leads to aggregation of satellites closer to the centrosome and increased centrosomal protein degradation that disrupts centrosome maturation and results in chromosome congression and segregation defects during mitosis. Our data reveal roles for Kif9 and centriolar satellites in the regulation of cellular proteostasis and mitosis.

2.
Curr Protoc ; 3(12): e965, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38153181

RESUMEN

Protein activity is generally functionally integrated and spatially restricted to key locations within the cell. Knocksideways experiments allow researchers to rapidly move proteins to alternate or ectopic regions of the cell and assess the resultant cellular response. Briefly, individual proteins to be tested using this approach must be modified with moieties that dimerize under treatment with rapamycin to promote the experimental spatial relocalizations. CRISPR technology enables researchers to engineer modified protein directly in cells while preserving proper protein levels because the engineered protein will be expressed from endogenous promoters. Here we provide straightforward instructions to engineer tagged, rapamycin-relocalizable proteins in cells. The protocol is described in the context of our work with the microtubule depolymerizer MCAK/Kif2C, but it is easily adaptable to other genes and alternate tags such as degrons, optogenetic constructs, and other experimentally useful modifications. Off-target effects are minimized by testing for the most efficient target site using a split-GFP construct. This protocol involves no proprietary kits, only plasmids available from repositories (such as addgene.org). Validation, relocalization, and some example novel discoveries obtained working with endogenous protein levels are described. A graduate student with access to a fluorescence microscope should be able to prepare engineered cells with spatially controllable endogenous protein using this protocol. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Choosing a target site for gene modification Basic Protocol 2: Design of gRNA(s) for targeted gene modification Basic Protocol 3: Split-GFP test for target efficiency Basic Protocol 4: Design of the recombination template and analytical primers Support Protocol 1: Design of primers for analytical PCR Basic Protocol 5: Transfection, isolation, and validation of engineered cells Support Protocol 2: Stable transfection of engineered cells with binding partners.


Asunto(s)
Sistemas CRISPR-Cas , ARN Guía de Sistemas CRISPR-Cas , Animales , Humanos , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Animales Modificados Genéticamente , Línea Celular , Sirolimus
3.
Neurooncol Adv ; 3(1): vdaa165, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33506204

RESUMEN

BACKGROUND: Glioma is sensitive to microtubule-targeting agents (MTAs), but most MTAs do not cross the blood brain barrier (BBB). To address this limitation, we developed the new chemical entity, ST-401, a brain-penetrant MTA. METHODS: Synthesis of ST-401. Measures of MT assembly and dynamics. Cell proliferation and viability of patient-derived (PD) glioma in culture. Measure of tumor microtube (TM) parameters using immunofluorescence analysis and machine learning-based workflow. Pharmacokinetics (PK) and experimental toxicity in mice. In vivo antitumor activity in the RCAS/tv-a PDGFB-driven glioma (PDGFB-glioma) mouse model. RESULTS: We discovered that ST-401 disrupts microtubule (MT) function through gentle and reverisible reduction in MT assembly that triggers mitotic delay and cell death in interphase. ST-401 inhibits the formation of TMs, MT-rich structures that connect glioma to a network that promotes resistance to DNA damage. PK analysis of ST-401 in mice shows brain penetration reaching antitumor concentrations, and in vivo testing of ST-401 in a xenograft flank tumor mouse model demonstrates significant antitumor activity and no over toxicity in mice. In the PDGFB-glioma mouse model, ST-401 enhances the therapeutic efficacies of temozolomide (TMZ) and radiation therapy (RT). CONCLUSION: Our study identifies hallmarks of glioma tumorigenesis that are sensitive to MTAs and reports ST-401 as a promising chemical scaffold to develop brain-penetrant MTAs.

4.
Curr Biol ; 30(4): 610-623.e5, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-31928876

RESUMEN

Neuronal axons terminate as synaptic boutons that form stable yet plastic connections with their targets. Synaptic bouton development relies on an underlying network of both long-lived and dynamic microtubules that provide structural stability for the boutons while also allowing for their growth and remodeling. However, a molecular-scale mechanism that explains how neurons appropriately balance these two microtubule populations remains a mystery. We hypothesized that α-tubulin acetyltransferase (αTAT), which both stabilizes long-lived microtubules against mechanical stress via acetylation and has been implicated in promoting microtubule dynamics, could play a role in this process. Using the Drosophila neuromuscular junction as a model, we found that non-enzymatic dαTAT activity limits the growth of synaptic boutons by affecting dynamic, but not stable, microtubules. Loss of dαTAT results in the formation of ectopic boutons. These ectopic boutons can be similarly suppressed by resupplying enzyme-inactive dαTAT or by treatment with a low concentration of the microtubule-targeting agent vinblastine, which acts to suppress microtubule dynamics. Biophysical reconstitution experiments revealed that non-enzymatic αTAT1 activity destabilizes dynamic microtubules but does not substantially impact the stability of long-lived microtubules. Further, during microtubule growth, non-enzymatic αTAT1 activity results in increasingly extended tip structures, consistent with an increased rate of acceleration of catastrophe frequency with microtubule age, perhaps via tip structure remodeling. Through these mechanisms, αTAT enriches for stable microtubules at the expense of dynamic ones. We propose that the specific suppression of dynamic microtubules by non-enzymatic αTAT activity regulates the remodeling of microtubule networks during synaptic bouton development.


Asunto(s)
Acetiltransferasas/metabolismo , Drosophila melanogaster/metabolismo , Unión Neuromuscular/fisiología , Terminales Presinápticos/fisiología , Animales , Drosophila melanogaster/enzimología , Drosophila melanogaster/crecimiento & desarrollo , Larva/enzimología , Larva/crecimiento & desarrollo , Larva/metabolismo
5.
Science ; 362(6415): 705-709, 2018 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-30409885

RESUMEN

We describe a general computational approach to designing self-assembling helical filaments from monomeric proteins and use this approach to design proteins that assemble into micrometer-scale filaments with a wide range of geometries in vivo and in vitro. Cryo-electron microscopy structures of six designs are close to the computational design models. The filament building blocks are idealized repeat proteins, and thus the diameter of the filaments can be systematically tuned by varying the number of repeat units. The assembly and disassembly of the filaments can be controlled by engineered anchor and capping units built from monomers lacking one of the interaction surfaces. The ability to generate dynamic, highly ordered structures that span micrometers from protein monomers opens up possibilities for the fabrication of new multiscale metamaterials.


Asunto(s)
Biología Computacional/métodos , Ingeniería de Proteínas/métodos , Proteínas/química , Microscopía por Crioelectrón , Escherichia coli , Conformación Proteica en Hélice alfa , Pliegue de Proteína , Estructura Secundaria de Proteína , Proteínas/genética
6.
Eur J Med Chem ; 159: 74-89, 2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-30268825

RESUMEN

Small molecules that target microtubules (MTs) represent promising therapeutics to treat certain types of cancer, including glioblastoma multiform (GBM). We synthesized modified carbazoles and evaluated their antitumor activity in GBM cells in culture. Modified carbazoles with an ethyl moiety linked to the nitrogen of the carbazole and a carbonyl moiety linked to distinct biaromatic rings exhibited remarkably different killing activities in human GBM cell lines and patient-derived GBM cells, with IC50 values from 67 to >10,000 nM. Measures of the activity of modified carbazoles with tubulin and microtubules coupled to molecular docking studies show that these compounds bind to the colchicine site of tubulin in a unique low interaction space that inhibits tubulin assembly. The modified carbazoles reported here represent novel chemical tools to better understand how small molecules disrupt MT functions and kill devastating cancers such as GBM.


Asunto(s)
Antineoplásicos/farmacología , Carbazoles/farmacología , Glioblastoma/tratamiento farmacológico , Microtúbulos/efectos de los fármacos , Antineoplásicos/síntesis química , Antineoplásicos/química , Carbazoles/síntesis química , Carbazoles/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Glioblastoma/patología , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
8.
Nat Cell Biol ; 19(4): 384-390, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28263957

RESUMEN

Microtubules tether centrosomes together during interphase. How this is accomplished and what benefit it provides to the cell is not known. We have identified a bipolar, minus-end-directed kinesin, Kif25, that suppresses centrosome separation. Kif25 is required to prevent premature centrosome separation during interphase. We show that premature centrosome separation leads to microtubule-dependent nuclear translocation, culminating in eccentric nuclear positioning that disrupts the cortical spindle positioning machinery. The activity of Kif25 during interphase is required to maintain a centred nucleus to ensure the spindle is stably oriented at the onset of mitosis.


Asunto(s)
Centrosoma/metabolismo , Cinesinas/química , Cinesinas/metabolismo , Mitosis , Multimerización de Proteína , Huso Acromático/metabolismo , Animales , Núcleo Celular/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células HCT116 , Células HeLa , Humanos , Células LLC-PK1 , Porcinos
10.
J Biol Chem ; 291(41): 21350-21362, 2016 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-27531749

RESUMEN

The molecular basis for control of the cytoskeleton by the Arf GTPase-activating protein AGAP1 has not been characterized. AGAP1 is composed of G-protein-like (GLD), pleckstrin homology (PH), Arf GAP, and ankyrin repeat domains. Kif2A was identified in screens for proteins that bind to AGAP1. The GLD and PH domains of AGAP1 bound the motor domain of Kif2A. Kif2A increased GAP activity of AGAP1, and a protein composed of the GLD and PH domains of AGAP1 increased ATPase activity of Kif2A. Knockdown (KD) of Kif2A or AGAP1 slowed cell migration and accelerated cell spreading. The effect of Kif2A KD on spreading could be rescued by expression of Kif2A-GFP or FLAG-AGAP1, but not by Kif2C-GFP. The effect of AGAP1 KD could be rescued by FLAG-AGAP1, but not by an AGAP1 mutant that did not bind Kif2A efficiently, ArfGAP1-HA or Kif2A-GFP. Taken together, the results support the hypothesis that the Kif2A·AGAP1 complex contributes to control of cytoskeleton remodeling involved in cell movement.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Cinesinas/metabolismo , Animales , Bovinos , Células Cultivadas , Proteínas Activadoras de GTPasa/química , Proteínas Activadoras de GTPasa/genética , Células HeLa , Humanos , Cinesinas/química , Cinesinas/genética
11.
Mol Cancer Ther ; 15(9): 2018-29, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27325686

RESUMEN

Glioblastoma multiforme is a devastating and intractable type of cancer. Current antineoplastic drugs do not improve the median survival of patients diagnosed with glioblastoma multiforme beyond 14 to 15 months, in part because the blood-brain barrier is generally impermeable to many therapeutic agents. Drugs that target microtubules (MT) have shown remarkable efficacy in a variety of cancers, yet their use as glioblastoma multiforme treatments has also been hindered by the scarcity of brain-penetrant MT-targeting compounds. We have discovered a new alkylindole compound, ST-11, that acts directly on MTs and rapidly attenuates their rate of assembly. Accordingly, ST-11 arrests glioblastoma multiforme cells in prometaphase and triggers apoptosis. In vivo analyses reveal that unlike current antitubulin agents, ST-11 readily crosses the blood-brain barrier. Further investigation in a syngeneic orthotopic mouse model of glioblastoma multiforme shows that ST-11 activates caspase-3 in tumors to reduce tumor volume without overt toxicity. Thus, ST-11 represents the first member of a new class of brain-penetrant antitubulin therapeutic agents. Mol Cancer Ther; 15(9); 2018-29. ©2016 AACR.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Microtúbulos/metabolismo , Moduladores de Tubulina/farmacología , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Caspasa 3/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Humanos , Ratones , Nanopartículas , Proyectos Piloto , Solubilidad , Moduladores de Tubulina/administración & dosificación , Moduladores de Tubulina/farmacocinética , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Mol Biol Cell ; 27(8): 1300-9, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26912793

RESUMEN

Depletion of microtubule (MT) regulators can initiate stable alterations in MT assembly rates that affect chromosome instability and mitotic spindle function, but the manner by which cellular MT assembly rates can stably increase or decrease is not understood. To investigate this phenomenon, we measured the response of microtubule assembly to both rapid and long-term loss of MT regulators MCAK/Kif2C and Kif18A. Depletion of MCAK/Kif2C by siRNA stably decreases MT assembly rates in mitotic spindles, whereas depletion of Kif18A stably increases rates of assembly. Surprisingly, this is not phenocopied by rapid rapamycin-dependent relocalization of MCAK/Kif2C and Kif18A to the plasma membrane. Instead, this treatment yields opposite affects on MT assembly. Rapidly increased MT assembly rates are balanced by a decrease in nucleated microtubules, whereas nucleation appears to be maximal and limiting for decreased MT assembly rates and also for long-term treatments. We measured amplified tubulin synthesis during long-term depletion of MT regulators and hypothesize that this is the basis for different phenotypes arising from long-term versus rapid depletion of MT regulators.


Asunto(s)
Cinesinas/metabolismo , Microtúbulos/metabolismo , Membrana Celular/metabolismo , Células HCT116/citología , Células HCT116/efectos de los fármacos , Células HeLa/citología , Células HeLa/efectos de los fármacos , Humanos , Cinesinas/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/efectos de los fármacos , Microtúbulos/genética , ARN Interferente Pequeño , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Sirolimus/farmacología , Huso Acromático/metabolismo , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismo
13.
Dev Cell ; 22(5): 1017-29, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22595673

RESUMEN

Alignment of chromosomes at the metaphase plate is a signature of cell division in metazoan cells, yet the mechanisms controlling this process remain ambiguous. Here we use a combination of quantitative live-cell imaging and reconstituted dynamic microtubule assays to investigate the molecular control of mitotic centromere movements. We establish that Kif18A (kinesin-8) attenuates centromere movement by directly promoting microtubule pausing in a concentration-dependent manner. This activity provides the dominant mechanism for restricting centromere movement to the spindle midzone. Furthermore, polar ejection forces spatially confine chromosomes via position-dependent regulation of kinetochore tension and centromere switch rates. We demonstrate that polar ejection forces are antagonistically modulated by chromokinesins. These pushing forces depend on Kid (kinesin-10) activity and are antagonized by Kif4A (kinesin-4), which functions to directly suppress microtubule growth. These data support a model in which Kif18A and polar ejection forces synergistically promote centromere alignment via spatial control of kinetochore-microtubule dynamics.


Asunto(s)
Posicionamiento de Cromosoma/fisiología , Cromosomas Humanos/metabolismo , Cinesinas/metabolismo , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Células HCT116 , Células HeLa , Humanos , Mitosis/fisiología , Modelos Biológicos , Huso Acromático/metabolismo
14.
J Cell Biol ; 197(2): 231-7, 2012 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-22492725

RESUMEN

Mitotic centromere-associated kinesin (MCAK) is a microtubule-depolymerizing kinesin-13 member that can track with polymerizing microtubule tips (hereafter referred to as tip tracking) during both interphase and mitosis. MCAK tracks with microtubule tips by binding to end-binding proteins (EBs) through the microtubule tip localization signal SKIP, which lies N terminal to MCAK's neck and motor domain. The functional significance of MCAK's tip-tracking behavior during mitosis has never been explained. In this paper, we identify and define a mitotic function specific to the microtubule tip-associated population of MCAK: negative regulation of microtubule length within the assembling bipolar spindle. This function depends on MCAK's ability to bind EBs and track with polymerizing nonkinetochore microtubule tips. Although this activity antagonizes centrosome separation during bipolarization, it ultimately benefits the dividing cell by promoting robust kinetochore attachments to the spindle microtubules.


Asunto(s)
Cinesinas/genética , Cinesinas/metabolismo , Cinetocoros/metabolismo , Microtúbulos/fisiología , Huso Acromático/fisiología , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Centrosoma/metabolismo , Células HeLa , Humanos , Cinesinas/antagonistas & inhibidores , Mitosis , Proteínas Nucleares/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Pirimidinas/farmacología , Interferencia de ARN , ARN Interferente Pequeño , Transducción de Señal/genética , Huso Acromático/ultraestructura , Tionas/farmacología
15.
Mol Cell ; 43(5): 764-75, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21884977

RESUMEN

Metaphase chromosome positioning depends on Kif18A, a kinesin-8 that accumulates at and suppresses the dynamics of K-MT plus ends. By engineering Kif18A mutants that suppress MT dynamics but fail to concentrate at K-MT plus ends, we identify a mechanism that allows Kif18A to accumulate at K-MT plus ends to a level required to suppress chromosome movements. Enrichment of Kif18A at K-MT plus ends depends on its C-terminal tail domain, while the ability of Kif18A to suppress MT growth is conferred by the N-terminal motor domain. The Kif18A tail contains a second MT-binding domain that diffuses along the MT lattice, suggesting that it tethers the motor to the MT track. Consistently, the tail enhances Kif18A processivity and is crucial for it to accumulate at K-MT plus ends. The heightened processivity of Kif18A, conferred by its tail domain, thus promotes concentration of Kif18A at K-MT plus ends, where it suppresses their dynamics to control chromosome movements.


Asunto(s)
Cinesinas/metabolismo , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Posicionamiento de Cromosoma , Células HeLa , Humanos , Cinesinas/genética
16.
Curr Biol ; 20(19): 1717-22, 2010 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-20850319

RESUMEN

The kinesin-13 family member mitotic centromere-associated kinesin (MCAK) is a potent microtubule depolymerase. Paradoxically, in cells it accumulates at the growing, rather than the shortening, microtubule plus ends. This plus-end tracking behavior requires the interaction between MCAK and members of the end-binding protein (EB) family, but the effect of EBs on the microtubule-destabilizing activity of MCAK and the functional significance of MCAK accumulation at the growing microtubule tips have so far remained elusive. Here, we dissect the functional interplay between MCAK and EB3 by reconstituting EB3-dependent MCAK activity on dynamic microtubules in vitro. Whereas MCAK alone efficiently blocks microtubule assembly, the addition of EB3 restores robust microtubule growth, an effect that is not dependent on the binding of MCAK to EB3. At the same time, EB3 targets MCAK to growing microtubule ends by increasing its association rate with microtubule tips, a process that requires direct interaction between the two proteins. This EB3-dependent microtubule plus-end accumulation does not affect the velocity of microtubule growth or shortening but enhances the capacity of MCAK to induce catastrophes. The combination of MCAK and EB3 thus promotes rapid switching between microtubule growth and shortening, which can be important for remodeling of the microtubule cytoskeleton.


Asunto(s)
Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Colorantes Fluorescentes/metabolismo , Cinesinas/genética , Microscopía Fluorescente/métodos , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/ultraestructura , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
17.
Nat Struct Mol Biol ; 17(1): 77-82, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19966798

RESUMEN

The kinesin-13, MCAK, is a critical regulator of microtubule dynamics in eukaryotic cells. We have functionally dissected the structural features responsible for MCAK's potent microtubule depolymerization activity. MCAK's positively charged neck enhances its delivery to microtubule ends not by tethering the molecule to microtubules during diffusion, as commonly thought, but by catalyzing the association of MCAK to microtubules. On the other hand, this same positively charged neck slightly diminishes MCAK's ability to remove tubulin subunits once at the microtubule end. Conversely, dimerization reduces MCAK delivery but improves MCAK's ability to remove tubulin subunits. The reported kinetics for these events predicts a nonspecific binding mechanism that may represent a paradigm for the diffusive interaction of many microtubule-binding proteins.


Asunto(s)
Cinesinas/metabolismo , Microtúbulos/metabolismo , Unión Proteica , Tubulina (Proteína)/metabolismo , Animales , Catálisis , Cricetinae , Cricetulus , Dimerización , Procesamiento de Imagen Asistido por Computador , Cinesinas/genética , Cinética , Microscopía Fluorescente , Mutación/genética , Fotoblanqueo , Estructura Terciaria de Proteína
18.
J Cell Biol ; 185(7): 1159-66, 2009 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-19564401

RESUMEN

In cells, stable microtubules (MTs) are covalently modified by a carboxypeptidase, which removes the C-terminal Tyr residue of alpha-tubulin. The significance of this selective detyrosination of MTs is not understood. In this study, we report that tubulin detyrosination in fibroblasts inhibits MT disassembly. This inhibition is relieved by overexpression of the depolymerizing motor mitotic centromere-associated kinesin (MCAK). Conversely, suppression of MCAK expression prevents disassembly of normal tyrosinated MTs in fibroblasts. Detyrosination of MTs suppresses the activity of MCAK in vitro, apparently as the result of a decreased affinity of the adenosine diphosphate (ADP)-inorganic phosphate- and ADP-bound forms of MCAK for the MT lattice. Detyrosination also impairs MT disassembly in neurons and inhibits the activity of the neuronal depolymerizing motor KIF2A in vitro. These results indicate that MT depolymerizing motors are directly inhibited by the detyrosination of tubulin, resulting in the stabilization of cellular MTs. Detyrosination of transiently stabilized MTs may give rise to persistent subpopulations of disassembly-resistant polymers to sustain subcellular cytoskeletal differentiation.


Asunto(s)
Microtúbulos/metabolismo , Proteínas Motoras Moleculares/metabolismo , Huso Acromático/metabolismo , Tubulina (Proteína)/metabolismo , Tirosina/metabolismo , Animales , Forma de la Célula , Células Cultivadas , Fibroblastos/citología , Fibroblastos/metabolismo , Hipocampo/citología , Cinesinas/genética , Cinesinas/metabolismo , Ratones , Ratones Noqueados , Proteínas Motoras Moleculares/genética , Neuronas/citología , Neuronas/metabolismo , Nocodazol/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Moduladores de Tubulina/metabolismo
19.
J Cell Biol ; 185(1): 51-7, 2009 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-19332892

RESUMEN

Kinesin motor proteins use adenosine triphosphate hydrolysis to do work on microtubules (MTs). Most kinesins walk along the MT, but class 13 kinesins instead uniquely recognize MT ends and depolymerize MT protofilaments. We have used electron microscopy (EM) to understand the molecular interactions by which kinesin 13 performs these tasks. Although a construct of only the motor domain of kinesin 13 binds to every heterodimer of a tubulin ring, a construct containing the neck and the motor domain occupies alternate binding sites. Likewise, EM maps of the dimeric full-length (FL) protein exhibit alternate site binding but reveal density for only one of two motor heads. These results indicate that the second head of dimeric kinesin 13 does not have access to adjacent binding sites on the curved protofilament and suggest that the neck alone is sufficient to obstruct access. Additionally, the FL construct promotes increased stacking of rings compared with other constructs. Together, these data suggest a model for kinesin 13 depolymerization in which increased efficiency is achieved by binding of one kinesin 13 molecule to adjacent protofilaments.


Asunto(s)
Cinesinas/metabolismo , Microtúbulos/metabolismo , Modelos Moleculares , Animales , Sitios de Unión , Cricetinae , Cricetulus , Humanos , Cinesinas/química , Microtúbulos/ultraestructura , Plasmodium falciparum , Estructura Terciaria de Proteína , Tubulina (Proteína)/metabolismo
20.
J Cell Biol ; 183(4): 617-23, 2008 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-19001124

RESUMEN

The kinesin-13 motor protein family members drive the removal of tubulin from microtubules (MTs) to promote MT turnover. A point mutation of the kinesin-13 family member mitotic centromere-associated kinesin/Kif2C (E491A) isolates the tubulin-removal conformation of the motor, and appears distinct from all previously described kinesin-13 conformations derived from nucleotide analogues. The E491A mutant removes tubulin dimers from stabilized MTs stoichiometrically in adenosine triphosphate (ATP) but is unable to efficiently release from detached tubulin dimers to recycle catalytically. Only in adenosine diphosphate (ADP) can the mutant catalytically remove tubulin dimers from stabilized MTs because the affinity of the mutant for detached tubulin dimers in ADP is low relative to lattice-bound tubulin. Thus, the motor can regenerate for further cycles of disassembly. Using the mutant, we show that release of tubulin by kinesin-13 motors occurs at the transition state for ATP hydrolysis, which illustrates a significant divergence in their coupling to ATP turnover relative to motile kinesins.


Asunto(s)
Adenosina Difosfato/metabolismo , Sustitución de Aminoácidos , Cinesinas/metabolismo , Microtúbulos/metabolismo , Mutación Missense , Tubulina (Proteína)/metabolismo , Adenosina Difosfato/genética , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Animales , Bovinos , Línea Celular , Dimerización , Humanos , Hidrólisis , Cinesinas/genética , Microtúbulos/genética , Tubulina (Proteína)/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...