Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Invertebr Pathol ; 183: 107618, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33992641

RESUMEN

The whitefly, Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae), is becoming a serious problem on Bt cotton. It causes enormous crop loss through its direct feeding and as a vector of cotton leaf curl virus. Chemical-dependent management is harming the environment and increased insecticide resistance is often observed in the fields. Identification of most virulent strains of entomopathogenic fungi (EPF) is essential to serve as an important component of an IPM program for management of B. tabaci. Compared to B. tabaci adults, the nymphal stage is reported to be more susceptible to entomopathogens, and targeting nymphs also helps vector management. We evaluated the bioefficacy of EPF and chemical pesticides against nymphs of B. tabaci on Bt cotton under polyhouse and field conditions. The bioefficacy index (BI) was considered as a mechanism to select the most effective EPF strains for field evaluation. The highest nymphal mortality under polyhouse conditions was recorded for Metarhizium anisopliae NA-01299 (86.7%), Beauveria bassiana MT-4511 (85.1%), Cordyceps javanica IT-10498 (81.1%), IT-10499 (81%), and B. bassiana NA-0409 (78.2%) relative to other EPF strains, spiromesifen (69.6%), buprofezin (62.2%) and pyriproxyfen (52.7%) at 7-days-post-spray treatment (DAS). However, among all the EPF, the highest BI was recorded in C. javanica IT-10499 (77%), IT-10495 (75.4%), Fusarium verticillioides IT-10493 (74.6%), and B. bassiana MT-4511 (73.1%). The pooled data of two-year field trials (2017-18 & 2018-19) revealed that the highest nymphal mortality was recorded for MT-4511 (85%), IT-10499 (83.2%), and pyriproxyfen 10% EC (78.6%) at 7-DAS. The BI-based selection of EPF proved to be a useful predictor of field efficacy. A sequential spray of the selected EPF would be a vital approach for resilient and sustainable integrated management of the B. tabaci nymphal population under field conditions.


Asunto(s)
Agentes de Control Biológico/farmacología , Hemípteros/microbiología , Control de Insectos , Control Biológico de Vectores , Animales , Beauveria/fisiología , Cordyceps/fisiología , Fusarium/fisiología , Hemípteros/crecimiento & desarrollo , Metarhizium/fisiología , Ninfa/crecimiento & desarrollo , Ninfa/microbiología
2.
Am J Bot ; 103(4): 719-29, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-27056931

RESUMEN

PREMISE OF THE STUDY: Introgression is widely acknowledged as a potential source of valuable genetic variation, and growing effort is being invested in analysis of interspecific crosses conferring transgressive variation. Experimental backcross populations provide an opportunity to study transmission genetics following interspecific hybridization, identifying opportunities and constraints to introgressive crop improvement. The evolutionary consequences of introgression have been addressed at the theoretical level, however, issues related to levels and patterns of introgression among (plant) species remain inadequately explored, including such factors as polyploidization, subgenome interaction inhabiting a common nucleus, and the genomic distribution and linkage relationships of introgressant alleles. METHODS: We analyze introgression into the polyploid Gossypium hirsutum (upland cotton) from its sister G. tomentosum and compare the level and pattern with that of G. barbadense representing a different clade tracing to the same polyploidization. KEY RESULTS: Across the genome, recurrent backcrossing to Gossypium hirsutum yielded only one-third of the expected average frequency of the G. tomentosum allele, although one unusual region showed preferential introgression. Although a similar rate of introgression is found in the two subgenomes of polyploid (AtDt) G. hirsutum, a preponderance of multilocus interactions were largely within the Dt subgenome. CONCLUSIONS: Skewed G. tomentosum chromatin transmission is polymorphic among two elite G. hirsutum genotypes, which suggests that genetic background may profoundly affect introgression of particular chromosomal regions. Only limited correspondence is found between G. hirsutum chromosomal regions that are intolerant to introgression from the two species, G. barbadense and G. tomentosum, concentrated near possible inversion polymorphisms. Complex transmission of introgressed chromatin highlights the challenges to utilization of exotic germplasm in crop improvement.


Asunto(s)
Gossypium/genética , Endogamia , Poliploidía , Alelos , Cromatina/metabolismo , Segregación Cromosómica/genética , Cromosomas de las Plantas/genética , Cruzamientos Genéticos , Sitios Genéticos , Genoma de Planta , Genotipo
3.
Theor Appl Genet ; 123(7): 1075-88, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21735234

RESUMEN

Seventeen backcross-self families from crosses between two Gossypium hirsutum recurrent parent lines (CA3084, CA3093) and G. tomentosum were used to identify quantitative trait loci (QTLs) controlling fiber quality traits. A total of 28 QTLs for fiber quality traits were identified (P < 0.001), including four for fiber elongation, eight for fiber fineness, four for fiber length, four for fiber strength, six for fiber uniformity, one for boll weight, and one for boll number. Three statistically significant marker-trait associations for lint yield were found in a single environment, but need further validation. Two-way analysis of variance revealed one locus with significant genotype × family interaction (P < 0.001) for fiber strength and a second locus with significant genotype × environment interaction (P < 0.001) in the CA3084 background, and two loci with significant genotype × background interaction (P < 0.001) for the 28 common markers segregating in both of the two recurrent backgrounds. Co-location of many QTLs for fiber quality traits partially explained correlations among these traits. Some G. tomentosum alleles were associated with multiple favorable effects, offering the possibility of rapid genetic gain by introgression. Many G. tomentosum alleles were recalcitrant to homozygosity, suggesting that they might be most effectively deployed in hybrid cottons. DNA markers linked to G. tomentosum QTLs identified in the present study promise to assist breeders in transferring and maintaining valuable traits from this exotic source during Upland cotton cultivar development. This study also adds further evidence to prior studies indicating that the majority of genetic variation associated with fiber quality in tetraploid cotton traces to the D-subgenome from a diploid ancestor that does not produce spinnable fiber.


Asunto(s)
Gossypium/genética , Sitios de Carácter Cuantitativo , Alelos , Cruzamientos Genéticos , ADN/genética , Genes de Plantas , Marcadores Genéticos/genética , Genoma , Genotipo , Gossypium/metabolismo , Homocigoto , Modelos Genéticos , Modelos Estadísticos , Fenotipo , Polimorfismo de Longitud del Fragmento de Restricción , Programas Informáticos
4.
Genetics ; 176(4): 2577-88, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17565937

RESUMEN

QTL mapping experiments yield heterogeneous results due to the use of different genotypes, environments, and sampling variation. Compilation of QTL mapping results yields a more complete picture of the genetic control of a trait and reveals patterns in organization of trait variation. A total of 432 QTL mapped in one diploid and 10 tetraploid interspecific cotton populations were aligned using a reference map and depicted in a CMap resource. Early demonstrations that genes from the non-fiber-producing diploid ancestor contribute to tetraploid lint fiber genetics gain further support from multiple populations and environments and advanced-generation studies detecting QTL of small phenotypic effect. Both tetraploid subgenomes contribute QTL at largely non-homeologous locations, suggesting divergent selection acting on many corresponding genes before and/or after polyploid formation. QTL correspondence across studies was only modest, suggesting that additional QTL for the target traits remain to be discovered. Crosses between closely-related genotypes differing by single-gene mutants yield profoundly different QTL landscapes, suggesting that fiber variation involves a complex network of interacting genes. Members of the lint fiber development network appear clustered, with cluster members showing heterogeneous phenotypic effects. Meta-analysis linked to synteny-based and expression-based information provides clues about specific genes and families involved in QTL networks.


Asunto(s)
Gossypium/genética , Mapeo Cromosómico , Fibra de Algodón , Cruzamientos Genéticos , ADN de Plantas/genética , Genes de Plantas , Genoma de Planta , Gossypium/clasificación , Gossypium/crecimiento & desarrollo , Familia de Multigenes , Mutación , Fenotipo , Poliploidía , Sitios de Carácter Cuantitativo
5.
Genome Res ; 15(9): 1198-210, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16109973

RESUMEN

Both ancient and recent polyploidy, together with post-polyploidization loss of many duplicated gene copies, complicates angiosperm comparative genomics. To explore an approach by which these challenges might be mitigated, genetic maps of extant diploid and tetraploid cottons (Gossypium spp.) were used to infer the approximate order of 3016 loci along the chromosomes of their hypothetical common ancestor. The inferred Gossypium gene order corresponded more closely than the original maps did to a similarly inferred ancestral gene order predating an independent paleopolyploidization (alpha) in Arabidopsis. At least 59% of the cotton map and 53% of the Arabidopsis transcriptome showed correspondence in multilocus gene arrangements based on one or both of two software packages (CrimeStatII, FISH). Genomic regions in which chromosome structural rearrangement has been rapid (obscuring gene order correspondence) have also been subject to greater divergence of individual gene sequences. About 26%-44% of corresponding regions involved multiple Arabidopsis or cotton chromosomes, in some cases consistent with known, more ancient, duplications. The genomic distributions of multiple-locus probes provided early insight into the consequences for chromosome structure of an ancient large-scale duplication in cotton. Inferences that mitigate the consequences of ancient duplications improve leveraging of genomic information for model organisms in the study of more complex genomes.


Asunto(s)
Arabidopsis/genética , Gossypium/genética , Poliploidía , Evolución Biológica , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Duplicación de Gen , Genes de Plantas , Genoma de Planta , Genómica , Especificidad de la Especie
6.
Theor Appl Genet ; 111(6): 1137-46, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16075204

RESUMEN

Mapping of genes that play major roles in cotton fiber development is an important step toward their cloning and manipulation, and provides a test of their relationships (if any) to agriculturally-important QTLs. Seven previously identified fiber mutants, four dominant (Li (1), Li (2), N (1) and Fbl) and three recessive (n (2), sma-4(h (a)), and sma-4(fz)), were genetically mapped in six F(2) populations comprising 124 or more plants each. For those mutants previously assigned to chromosomes by using aneuploids or by linkage to other morphological markers, all map locations were concordant except n (2), which mapped to the homoeolog of the chromosome previously reported. Three mutations with primary effects on fuzz fibers (N (1), Fbl, n (2)) mapped near the likelihood peaks for QTLs that affected lint fiber productivity in the same populations, perhaps suggesting pleiotropic effects on both fiber types. However, only Li (1) mapped within the likelihood interval for 191 previously detected lint fiber QTLs discovered in non-mutant crosses, suggesting that these mutations may occur in genes that played early roles in cotton fiber evolution, and for which new allelic variants are quickly eliminated from improved germplasm. A close positional association between sma-4(h ( a )), two leaf and stem-borne trichome mutants (t (1) , t (2)), and a gene previously implicated in fiber development, sucrose synthase, raises questions about the possibility that these genes may be functionally related. Increasing knowledge of the correspondence of the cotton and Arabidopsis genomes provides several avenues by which genetic dissection of cotton fiber development may be accelerated.


Asunto(s)
Mapeo Cromosómico , Fibra de Algodón , Gossypium/genética , Mutación/genética , Fenotipo , Semillas/genética , Cruzamientos Genéticos , Sitios de Carácter Cuantitativo
7.
Theor Appl Genet ; 111(4): 665-76, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16044266

RESUMEN

The existence of five tetraploid species that derive from a common polyploidization event about 1 million years ago makes Gossypium (cotton) an attractive genus in which to study polyploid evolution and offers opportunities for crop improvement through introgression. To date, only crosses (HB) between the cultivated tetraploid cottons Gossypium hirsutum and G. barbadense have been genetically mapped. Genetic analysis of a cross (HT) between G. hirsutum and the Hawaiian endemic G. tomentosum is reported here. Overall, chromosomal lengths are closely correlated between the HB and HT maps, although there is generally more recombination in HT, consistent with a closer relationship between the two species. Interspecific differences in local recombination rates are observed, perhaps involving a number of possible factors. Our data corroborate cytogenetic evidence that chromosome arm translocations have not played a role in the divergence of polyploid cottons. However, one terminal inversion on chromosome (chr.) 3 does appear to differentiate G. tomentosum from G. barbadense; a few other apparent differences in marker order fall near gaps in the HT map and/or lack the suppression of recombination expected of inversions, and thus remain uncertain. Genetic analysis of a discrete trait that is characteristic of G. tomentosum, nectarilessness, mapped not to the classically reported location on chr. 12 but to the homoeologous location on chr. 26. We propose some hypotheses for further study to explore this incongruity. Preliminary quantitative trait locus (QTL) analysis of this small population, albeit with a high probability of false negatives, suggests a different genetic control of leaf morphology in HT than in HB, which also warrants further investigation.


Asunto(s)
Mapeo Cromosómico , Gossypium/genética , Hibridación Genética , Fenotipo , Cromosomas de las Plantas/genética , Gossypium/anatomía & histología , Hojas de la Planta/anatomía & histología , Poliploidía , Sitios de Carácter Cuantitativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...