Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Imaging ; 10(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38667978

RESUMEN

Magnetoencephalography (MEG) is a noninvasive neuroimaging technique widely recognized for epilepsy and tumor mapping. MEG clinical reporting requires a multidisciplinary team, including expert input regarding each dipole's anatomic localization. Here, we introduce a novel tool, the "Magnetoencephalography Atlas Viewer" (MAV), which streamlines this anatomical analysis. The MAV normalizes the patient's Magnetic Resonance Imaging (MRI) to the Montreal Neurological Institute (MNI) space, reverse-normalizes MNI atlases to the native MRI, identifies MEG dipole files, and matches dipoles' coordinates to their spatial location in atlas files. It offers a user-friendly and interactive graphical user interface (GUI) for displaying individual dipoles, groups, coordinates, anatomical labels, and a tri-planar MRI view of the patient with dipole overlays. It evaluated over 273 dipoles obtained in clinical epilepsy subjects. Consensus-based ground truth was established by three neuroradiologists, with a minimum agreement threshold of two. The concordance between the ground truth and MAV labeling ranged from 79% to 84%, depending on the normalization method. Higher concordance rates were observed in subjects with minimal or no structural abnormalities on the MRI, ranging from 80% to 90%. The MAV provides a straightforward MEG dipole anatomic localization method, allowing a nonspecialist to prepopulate a report, thereby facilitating and reducing the time of clinical reporting.

2.
AJNR Am J Neuroradiol ; 45(3): 312-319, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453408

RESUMEN

BACKGROUND AND PURPOSE: Recent developments in deep learning methods offer a potential solution to the need for alternative imaging methods due to concerns about the toxicity of gadolinium-based contrast agents. The purpose of the study was to synthesize virtual gadolinium contrast-enhanced T1-weighted MR images from noncontrast multiparametric MR images in patients with primary brain tumors by using deep learning. MATERIALS AND METHODS: We trained and validated a deep learning network by using MR images from 335 subjects in the Brain Tumor Segmentation Challenge 2019 training data set. A held out set of 125 subjects from the Brain Tumor Segmentation Challenge 2019 validation data set was used to test the generalization of the model. A residual inception DenseNet network, called T1c-ET, was developed and trained to simultaneously synthesize virtual contrast-enhanced T1-weighted (vT1c) images and segment the enhancing portions of the tumor. Three expert neuroradiologists independently scored the synthesized vT1c images by using a 3-point Likert scale, evaluating image quality and contrast enhancement against ground truth T1c images (1 = poor, 2 = good, 3 = excellent). RESULTS: The synthesized vT1c images achieved structural similarity index, peak signal-to-noise ratio, and normalized mean square error scores of 0.91, 64.35, and 0.03, respectively. There was moderate interobserver agreement between the 3 raters, regarding the algorithm's performance in predicting contrast enhancement, with a Fleiss kappa value of 0.61. Our model was able to accurately predict contrast enhancement in 88.8% of the cases (scores of 2 to 3 on the 3-point scale). CONCLUSIONS: We developed a novel deep learning architecture to synthesize virtual postcontrast enhancement by using only conventional noncontrast brain MR images. Our results demonstrate the potential of deep learning methods to reduce the need for gadolinium contrast in the evaluation of primary brain tumors.


Asunto(s)
Neoplasias Encefálicas , Aprendizaje Profundo , Humanos , Gadolinio , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Encéfalo/patología , Medios de Contraste , Imagen por Resonancia Magnética/métodos
3.
Nat Commun ; 14(1): 5369, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37666865

RESUMEN

Dopamine fundamentally contributes to reinforcement learning, but recent accounts also suggest a contribution to specific action selection mechanisms and the regulation of response vigour. Here, we examine dopaminergic mechanisms underlying human reinforcement learning and action selection via a combined pharmacological neuroimaging approach in male human volunteers (n = 31, within-subjects; Placebo, 150 mg of the dopamine precursor L-dopa, 2 mg of the D2 receptor antagonist Haloperidol). We found little credible evidence for previously reported beneficial effects of L-dopa vs. Haloperidol on learning from gains and altered neural prediction error signals, which may be partly due to differences experimental design and/or drug dosages. Reinforcement learning drift diffusion models account for learning-related changes in accuracy and response times, and reveal consistent decision threshold reductions under both drugs, in line with the idea that lower dosages of D2 receptor antagonists increase striatal DA release via an autoreceptor-mediated feedback mechanism. These results are in line with the idea that dopamine regulates decision thresholds during reinforcement learning, and may help to bridge action selection and response vigor accounts of dopamine.


Asunto(s)
Dopamina , Procedimientos de Cirugía Plástica , Humanos , Masculino , Levodopa/farmacología , Haloperidol/farmacología , Hombres
4.
J Neurosci ; 43(43): 7175-7185, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37684029

RESUMEN

When choosing between rewards that differ in temporal proximity (intertemporal choice), human preferences are typically stable, constituting a clinically relevant transdiagnostic trait. Here we show, in female and male human patients undergoing deep brain stimulation (DBS) of the anterior limb of the internal capsule/NAcc region for treatment-resistant obsessive-compulsive disorder, that long-term chronic (but not phasic) DBS disrupts intertemporal preferences. Hierarchical Bayesian modeling accounting for temporal discounting behavior across multiple time points allowed us to assess both short-term and long-term reliability of intertemporal choice. In controls, temporal discounting was highly reliable, both long-term (6 months) and short-term (1 week). In contrast, in patients undergoing DBS, short-term reliability was high, but long-term reliability (6 months) was severely disrupted. Control analyses confirmed that this effect was not because of range restriction, the presence of obsessive-compulsive disorder symptoms or group differences in choice stochasticity. Model-agnostic between- and within-subject analyses confirmed this effect. These findings provide initial evidence for long-term modulation of cognitive function via DBS and highlight a potential contribution of the human NAcc region to intertemporal preference stability over time.SIGNIFICANCE STATEMENT Choosing between rewards that differ in temporal proximity is in part a stable trait with relevance for many mental disorders, and depends on prefrontal regions and regions of the dopamine system. Here we show that chronic deep brain stimulation of the human anterior limb of the internal capsule/NAcc region for treatment-resistant obsessive-compulsive disorder disrupts the stability of intertemporal preferences. These findings show that chronic stimulation of one of the brain's central motivational hubs can disrupt preferences thought to depend on this circuit.


Asunto(s)
Estimulación Encefálica Profunda , Descuento por Demora , Humanos , Masculino , Femenino , Núcleo Accumbens/fisiología , Reproducibilidad de los Resultados , Teorema de Bayes , Resultado del Tratamiento
5.
Cell Rep ; 42(7): 112804, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37453060

RESUMEN

The bone marrow microenvironment (BME) drives drug resistance in acute lymphoblastic leukemia (ALL) through leukemic cell interactions with bone marrow (BM) niches, but the underlying mechanisms remain unclear. Here, we show that the interaction between ALL and mesenchymal stem cells (MSCs) through integrin ß1 induces an epithelial-mesenchymal transition (EMT)-like program in MSC-adherent ALL cells, resulting in drug resistance and enhanced survival. Moreover, single-cell RNA sequencing analysis of ALL-MSC co-culture identifies a hybrid cluster of MSC-adherent ALL cells expressing both B-ALL and MSC signature genes, orchestrated by a WNT/ß-catenin-mediated EMT-like program. Blockade of interaction between ß-catenin and CREB binding protein impairs the survival and drug resistance of MSC-adherent ALL cells in vitro and results in a reduction in leukemic burden in vivo. Targeting of this WNT/ß-catenin-mediated EMT-like program is a potential therapeutic approach to overcome cell extrinsically acquired drug resistance in ALL.


Asunto(s)
Transición Epitelial-Mesenquimal , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , beta Catenina , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Técnicas de Cocultivo , Resistencia a Medicamentos , Proliferación Celular , Microambiente Tumoral
6.
J Neurosurg Pediatr ; 31(5): 496-502, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36883636

RESUMEN

OBJECTIVE: Task-based functional MRI (tb-fMRI) is now considered the standard, noninvasive technique in establishing language laterality in children for surgical planning. The evaluation can be limited due to several factors such as age, language barriers, and developmental and cognitive delays. Resting-state functional MRI (rs-fMRI) offers a potential path to establish language dominance without active task participation. The authors sought to compare the ability of rs-fMRI for language lateralization in the pediatric population with conventional tb-fMRI used as the gold standard. METHODS: The authors performed a retrospective evaluation of all pediatric patients at a dedicated quaternary pediatric hospital who underwent tb-fMRI and rs-fMRI from 2019 to 2021 as part of the surgical workup for patients with seizures and brain tumors. Task-based fMRI language laterality was based on a patient's adequate performance on one or more of the following: sentence completion, verb generation, antonym generation, or passive listening tasks. Resting-state fMRI data were postprocessed using statistical parametric mapping, FMRIB Software Library, and FreeSurfer as described in the literature. The laterality index (LI) was calculated from the independent component (IC) with the highest Jaccard Index (JI) for the language mask. Additionally, the authors visually inspected the activation maps for two ICs with the highest JIs. The rs-fMRI LI of IC1 and the authors' image-based subjective interpretation of language lateralization were compared with tb-fMRI, which was considered the gold standard for this study. RESULTS: A retrospective search yielded 33 patients with language fMRI data. Eight patients were excluded (5 with suboptimal tb-fMRI and 3 with suboptimal rs-fMRI data). Twenty-five patients (age range 7-19 years, male/female ratio 15:10) were included in the study. The language laterality concordance between tb-fMRI and rs-fMRI ranged from 68% to 80% for assessment based on LI of independent component analysis with highest JI and for subjective evaluation by visual inspection of activation maps, respectively. CONCLUSIONS: The concordance rates between tb-fMRI and rs-fMRI of 68% to 80% show the limitation of rs-fMRI in determining language dominance. Resting-state fMRI should not be used as the sole method for language lateralization in clinical practice.


Asunto(s)
Mapeo Encefálico , Neoplasias Encefálicas , Humanos , Masculino , Niño , Femenino , Adolescente , Adulto Joven , Adulto , Estudios Retrospectivos , Mapeo Encefálico/métodos , Neoplasias Encefálicas/cirugía , Lenguaje , Lateralidad Funcional/fisiología , Imagen por Resonancia Magnética/métodos
7.
Patterns (N Y) ; 3(11): 100629, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36419445
8.
Patterns (N Y) ; 3(10): 100604, 2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36277814

RESUMEN

Recent years have seen a massive growth in ethical and legal frameworks to govern data science practices. Yet one of the core questions associated with ethical and legal frameworks is the extent to which they are implemented in practice. A particularly interesting case in this context comes to public officials, for whom higher standards typically exist. We are thus trying to understand how ethical and legal frameworks influence the everyday practices on data and algorithms of public sector data professionals. The following paper looks at two cases: public sector data professionals (1) at municipalities in the Netherlands and (2) at the Netherlands Police. We compare these two cases based on an analytical research framework we develop in this article to help understanding of everyday professional practices. We conclude that there is a wide gap between legal and ethical governance rules and the everyday practices.

9.
Patterns (N Y) ; 3(10): 100607, 2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36277817

RESUMEN

In a collaboration between TU Delft and Utrecht University, the authors recently wrote a qualitative study on the gap between regulatory (ethical and legal) frameworks and the daily practices of data professionals. This People of Data highlights the importance of collaboration in the success of interdisciplinary research and the responsibility of data scientists in safeguarding the public and ethical values.

10.
Brain Behav ; 12(9): e2720, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36053126

RESUMEN

INTRODUCTION: The purpose of this study is to determine if delta waves, measured by magnetoencephalography (MEG), increase in adolescents due to a sports concussion. METHODS: Twenty-four adolescents (age 14-17) completed pre- and postseason MRI and MEG scanning. MEG whole-brain delta power was calculated for each subject and normalized by the subject's total power. In eight high school football players diagnosed with a concussion during the season (mean age = 15.8), preseason delta power was subtracted from their postseason scan. In eight high school football players without a concussion (mean age = 15.7), preseason delta power was subtracted from postseason delta power and in eight age-matched noncontact controls (mean age = 15.9), baseline delta power was subtracted from a 4-month follow-up scan. ANOVA was used to compare the mean differences between preseason and postseason scans for the three groups of players, with pairwise comparisons based on Student's t-test method. RESULTS: Players with concussions had significantly increased delta wave power at their postseason scans than nonconcussed players (p = .018) and controls (p = .027). CONCLUSION: We demonstrate that a single concussion during the season in adolescent subjects can increase MEG measured delta frequency power at their postseason scan. This adds to the growing body of literature indicating increased delta power following a concussion.


Asunto(s)
Traumatismos en Atletas , Conmoción Encefálica , Fútbol Americano , Adolescente , Conmoción Encefálica/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Magnetoencefalografía , Instituciones Académicas
11.
Artículo en Inglés | MEDLINE | ID: mdl-36998700

RESUMEN

Deep learning (DL) models have provided state-of-the-art performance in various medical imaging benchmarking challenges, including the Brain Tumor Segmentation (BraTS) challenges. However, the task of focal pathology multi-compartment segmentation (e.g., tumor and lesion sub-regions) is particularly challenging, and potential errors hinder translating DL models into clinical workflows. Quantifying the reliability of DL model predictions in the form of uncertainties could enable clinical review of the most uncertain regions, thereby building trust and paving the way toward clinical translation. Several uncertainty estimation methods have recently been introduced for DL medical image segmentation tasks. Developing scores to evaluate and compare the performance of uncertainty measures will assist the end-user in making more informed decisions. In this study, we explore and evaluate a score developed during the BraTS 2019 and BraTS 2020 task on uncertainty quantification (QU-BraTS) and designed to assess and rank uncertainty estimates for brain tumor multi-compartment segmentation. This score (1) rewards uncertainty estimates that produce high confidence in correct assertions and those that assign low confidence levels at incorrect assertions, and (2) penalizes uncertainty measures that lead to a higher percentage of under-confident correct assertions. We further benchmark the segmentation uncertainties generated by 14 independent participating teams of QU-BraTS 2020, all of which also participated in the main BraTS segmentation task. Overall, our findings confirm the importance and complementary value that uncertainty estimates provide to segmentation algorithms, highlighting the need for uncertainty quantification in medical image analyses. Finally, in favor of transparency and reproducibility, our evaluation code is made publicly available at https://github.com/RagMeh11/QU-BraTS.

12.
Comput Psychiatr ; 6(1): 142-165, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-38774777

RESUMEN

Gambling disorder is a behavioral addiction that negatively impacts personal finances, work, relationships and mental health. In this pre-registered study (https://osf.io/5ptz9/) we investigated the impact of real-life gambling environments on two computational markers of addiction, temporal discounting and model-based reinforcement learning. Gambling disorder is associated with increased temporal discounting and reduced model-based learning. Regular gamblers (n = 30, DSM-5 score range 3-9) performed both tasks in a neutral (café) and a gambling-related environment (slot-machine venue) in counterbalanced order. Data were modeled using drift diffusion models for temporal discounting and reinforcement learning via hierarchical Bayesian estimation. Replicating previous findings, gamblers discounted rewards more steeply in the gambling-related context. This effect was positively correlated with gambling related cognitive distortions (pre-registered analysis). In contrast to our pre-registered hypothesis, model-based reinforcement learning was improved in the gambling context. Here we show that temporal discounting and model-based reinforcement learning are modulated in opposite ways by real-life gambling cue exposure. Results challenge aspects of habit theories of addiction, and reveal that laboratory-based computational markers of psychopathology are under substantial contextual control.

13.
Neuroimage ; 241: 118402, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34274419

RESUMEN

Magnetoencephalography (MEG) is a functional neuroimaging tool that records the magnetic fields induced by neuronal activity; however, signal from non-neuronal sources can corrupt the data. Eye-blinks, saccades, and cardiac activity are three of the most common sources of non-neuronal artifacts. They can be measured by affixing eye proximal electrodes, as in electrooculography (EOG), and chest electrodes, as in electrocardiography (ECG), however this complicates imaging setup, decreases patient comfort, and can induce further artifacts from movement. This work proposes an EOG- and ECG-free approach to identify eye-blinks, saccades, and cardiac activity signals for automated artifact suppression. The contribution of this work is three-fold. First, using a data driven, multivariate decomposition approach based on Independent Component Analysis (ICA), a highly accurate artifact classifier is constructed as an amalgam of deep 1-D and 2-D Convolutional Neural Networks (CNNs) to automate the identification and removal of ubiquitous whole brain artifacts including eye-blink, saccade, and cardiac artifacts. The specific architecture of this network is optimized through an unbiased, computer-based hyperparameter random search. Second, visualization methods are applied to the learned abstraction to reveal what features the model uses and to bolster user confidence in the model's training and potential for generalization. Finally, the model is trained and tested on both resting-state and task MEG data from 217 subjects, and achieves a new state-of-the-art in artifact detection accuracy of 98.95% including 96.74% sensitivity and 99.34% specificity on the held out test-set. This work automates MEG processing for both clinical and research use, adapts to the acquired acquisition time, and can obviate the need for EOG or ECG electrodes for artifact detection.


Asunto(s)
Artefactos , Encéfalo/fisiología , Magnetoencefalografía/métodos , Redes Neurales de la Computación , Procesamiento de Señales Asistido por Computador , Adolescente , Adulto , Anciano , Parpadeo/fisiología , Niño , Femenino , Humanos , Magnetoencefalografía/normas , Masculino , Persona de Mediana Edad , Adulto Joven
14.
PLoS One ; 16(6): e0253620, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34143854

RESUMEN

Tourette syndrome is a neurodevelopmental disorder associated with hyperactivity in dopaminergic networks. Dopaminergic hyperactivity in the basal ganglia has previously been linked to increased sensitivity to positive reinforcement and increases in choice impulsivity. In this study, we examine whether this extends to changes in temporal discounting, where impulsivity is operationalized as an increased preference for smaller-but-sooner over larger-but-later rewards. We assessed intertemporal choice in two studies including nineteen adolescents (age: mean[sd] = 14.21[±2.37], 13 male subjects) and twenty-five adult patients (age: mean[sd] = 29.88 [±9.03]; 19 male subjects) with Tourette syndrome and healthy age- and education matched controls. Computational modeling using exponential and hyperbolic discounting models via hierarchical Bayesian parameter estimation revealed reduced temporal discounting in adolescent patients, and no evidence for differences in adult patients. Results are discussed with respect to neural models of temporal discounting, dopaminergic alterations in Tourette syndrome and the developmental trajectory of temporal discounting. Specifically, adolescents might show attenuated discounting due to improved inhibitory functions that also affect choice impulsivity and/or the developmental trajectory of executive control functions. Future studies would benefit from a longitudinal approach to further elucidate the developmental trajectory of these effects.


Asunto(s)
Descuento por Demora/fisiología , Conducta Impulsiva , Síndrome de Tourette/psicología , Adolescente , Adulto , Teorema de Bayes , Niño , Femenino , Humanos , Masculino , Modelos Teóricos , Pruebas Neuropsicológicas , Adulto Joven
15.
J Neurotrauma ; 38(19): 2763-2771, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34039024

RESUMEN

The purpose of this study is to assess the relationship between regional white matter diffusion imaging changes and finite element strain measures in nonconcussed youth football players. Pre- and post-season diffusion-weighted imaging was performed in 102 youth football subject-seasons, in which no concussions were diagnosed. The diffusion data were normalized to the IXI template. Percent change in fractional anisotropy (%ΔFA) images were generated. Using data from the head impact telemetry system, the cumulative maximum principal strain one times strain rate (CMPS1 × SR), a measure of the cumulative tensile brain strain and strain rate for one season, was calculated for each subject. Two linear regression analyses were performed to identify significant positive or inverse relationships between CMPS1 × SR and %ΔFA within the international consortium for brain mapping white matter mask. Age, body mass index, days between pre- and post-season imaging, previous brain injury, attention disorder diagnosis, and imaging protocol were included as covariates. False discovery rate correction was used with corrected alphas of 0.025 and voxel thresholds of zero. Controlling for all covariates, a significant, positive linear relationship between %ΔFA and CMPS1 × SR was identified in the bilateral cingulum, fornix, internal capsule, external capsule, corpus callosum, corona radiata, corticospinal tract, cerebral and middle cerebellar peduncle, superior longitudinal fasciculus, and right superior fronto-occipital fasciculus. Post hoc analyses further demonstrated significant %ΔFA differences between high-strain football subjects and noncollision control athletes, no significant %ΔFA differences between low-strain subjects and noncollision control athletes, and that CMPS1 × SR significantly explained more %ΔFA variance than number of head impacts alone.


Asunto(s)
Conmoción Encefálica/diagnóstico por imagen , Conmoción Encefálica/fisiopatología , Fútbol Americano/lesiones , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/fisiopatología , Adolescente , Factores de Edad , Anisotropía , Conmoción Encefálica/etiología , Estudios de Casos y Controles , Niño , Estudios de Cohortes , Imagen de Difusión por Resonancia Magnética , Humanos , Masculino , Sustancia Blanca/patología
16.
Elife ; 102021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33570491

RESUMEN

Morphogens function in concentration-dependent manners to instruct cell fate during tissue patterning. The cytoneme morphogen transport model posits that specialized filopodia extend between morphogen-sending and responding cells to ensure that appropriate signaling thresholds are achieved. How morphogens are transported along and deployed from cytonemes, how quickly a cytoneme-delivered, receptor-dependent signal is initiated, and whether these processes are conserved across phyla are not known. Herein, we reveal that the actin motor Myosin 10 promotes vesicular transport of Sonic Hedgehog (SHH) morphogen in mouse cell cytonemes, and that SHH morphogen gradient organization is altered in neural tubes of Myo10-/- mice. We demonstrate that cytoneme-mediated deposition of SHH onto receiving cells induces a rapid, receptor-dependent signal response that occurs within seconds of ligand delivery. This activity is dependent upon a novel Dispatched (DISP)-BOC/CDON co-receptor complex that functions in ligand-producing cells to promote cytoneme occurrence and facilitate ligand delivery for signal activation.


During development, cells must work together and talk to each other to build the organs and tissues of the growing embryo. To communicate precisely with long-distance targets, cells can project a series of thin finger-like structures known as cytonemes. Cells use these miniature highways to exchange cargo and signals, such as the protein sonic hedgehog (SHH for short). Alterations to the way SHH is exchanged during development predispose to cancer and lead to disorders of the nervous system. Yet, the mechanisms by which cytonemes work in mammals remain to be fully elucidated. In particular, it is still unclear how the structures start to form, and how the proteins are loaded and transported from one end to another. A 'molecular motor' called myosin 10, which can carry cargo along the internal skeleton of cells, may be involved in these processes. To find out, Hall et al. used fluorescent probes to track both myosin 10 and SHH in mouse cells, showing that myosin 10 carries SHH from the core of the signal-producing cell to the tips of cytonemes. There, the protein is passed to the target cell upon contact, triggering a quick response. SHH also appeared to be more than just passive cargo, interacting with another group of proteins in the signal-emitting cell before reaching its target. This mechanism then encourages the signalling cells to produce more cytonemes towards their neighbours. SHH is crucial during development, but also after birth: in fact, changes to SHH transport in adulthood can also disrupt tissue balance and hinder healing. Understanding how healthy tissues send this signal may reveal why and how disease emerges.


Asunto(s)
Moléculas de Adhesión Celular/genética , Proteínas Hedgehog/genética , Inmunoglobulina G/genética , Proteínas de la Membrana/genética , Miosinas/genética , Receptores de Superficie Celular/genética , Animales , Transporte Biológico , Moléculas de Adhesión Celular/metabolismo , Proteínas Hedgehog/metabolismo , Inmunoglobulina G/metabolismo , Ligandos , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Miosinas/metabolismo , Receptores de Superficie Celular/metabolismo
17.
Brain Connect ; 10(8): 422-435, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33030350

RESUMEN

Background: To develop a new functional magnetic resonance image (fMRI) network inference method, BrainNET, that utilizes an efficient machine learning algorithm to quantify contributions of various regions of interests (ROIs) in the brain to a specific ROI. Methods: BrainNET is based on extremely randomized trees to estimate network topology from fMRI data and modified to generate an adjacency matrix representing brain network topology, without reliance on arbitrary thresholds. Open-source simulated fMRI data of 50 subjects in 28 different simulations under various confounding conditions with known ground truth were used to validate the method. Performance was compared with correlation and partial correlation (PC). The real-world performance was then evaluated in a publicly available attention-deficit/hyperactivity disorder (ADHD) data set, including 134 typically developing children (mean age: 12.03, males: 83), 75 ADHD inattentive (mean age: 11.46, males: 56), and 93 ADHD combined (mean age: 11.86, males: 77) subjects. Network topologies in ADHD were inferred using BrainNET, correlation, and PC. Graph metrics were extracted to determine differences between the ADHD groups. Results: BrainNET demonstrated excellent performance across all simulations and varying confounders in identifying the true presence of connections. In the ADHD data set, BrainNET was able to identify significant changes (p < 0.05) in graph metrics between groups. No significant changes in graph metrics between ADHD groups were identified using correlation and PC. Conclusion: We describe BrainNET, a new network inference method to estimate fMRI connectivity that was adapted from gene regulatory methods. BrainNET out-performed Pearson correlation and PC in fMRI simulation data and real-world ADHD data. BrainNET can be used independently or combined with other existing methods as a useful tool to understand network changes and to determine the true network topology of the brain under various conditions and disease states. Impact statement Developed a new functional magnetic resonance image (fMRI) network inference method named as BrainNET using machine learning. BrainNET out-performed Pearson correlation and partial correlation in fMRI simulation data and real-world attention-deficit/hyperactivity disorder data. BrainNET does not need to be pretrained and can be applied to infer fMRI network topology independently on individual subjects and for varying number of nodes.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/diagnóstico por imagen , Aprendizaje Automático , Adolescente , Algoritmos , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Mapeo Encefálico/métodos , Niño , Simulación por Computador , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/diagnóstico por imagen , Sensibilidad y Especificidad
18.
J Neurosci ; 40(41): 7936-7948, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32948675

RESUMEN

The neurotransmitter dopamine is implicated in diverse functions, including reward processing, reinforcement learning, and cognitive control. The tendency to discount future rewards over time has long been discussed in the context of potential dopaminergic modulation. Here we examined the effect of a single dose of the D2 receptor antagonist haloperidol (2 mg) on temporal discounting in healthy female and male human participants. Our approach extends previous pharmacological studies in two ways. First, we applied combined temporal discounting drift diffusion models to examine choice dynamics. Second, we examined dopaminergic modulation of reward magnitude effects on temporal discounting. Hierarchical Bayesian parameter estimation revealed that the data were best accounted for by a temporal discounting drift diffusion model with nonlinear trialwise drift rate scaling. This model showed good parameter recovery, and posterior predictive checks revealed that it accurately reproduced the relationship between decision conflict and response times in individual participants. We observed reduced temporal discounting and substantially faster nondecision times under haloperidol compared with placebo. Discounting was steeper for low versus high reward magnitudes, but this effect was largely unaffected by haloperidol. Results were corroborated by model-free analyses and modeling via more standard approaches. We previously reported elevated caudate activation under haloperidol in this sample of participants, supporting the idea that haloperidol elevated dopamine neurotransmission (e.g., by blocking inhibitory feedback via presynaptic D2 auto-receptors). The present results reveal that this is associated with an augmentation of both lower-level (nondecision time) and higher-level (temporal discounting) components of the decision process.SIGNIFICANCE STATEMENT Dopamine is implicated in reward processing, reinforcement learning, and cognitive control. Here we examined the effects of a single dose of the D2 receptor antagonist haloperidol on temporal discounting and choice dynamics during the decision process. We extend previous studies by applying computational modeling using the drift diffusion model, which revealed that haloperidol reduced the nondecision time and reduced impulsive choice compared with placebo. These findings are compatible with a haloperidol-induced increase in striatal dopamine (e.g., because of a presynaptic mechanism). Our data provide novel insights into the contributions of dopamine to value-based decision-making and highlight how comprehensive model-based analyses using sequential sampling models can inform the effects of pharmacological modulation on choice processes.


Asunto(s)
Conducta de Elección/efectos de los fármacos , Descuento por Demora/efectos de los fármacos , Antagonistas de los Receptores de Dopamina D2/farmacología , Dopamina/fisiología , Haloperidol/farmacología , Adulto , Algoritmos , Teorema de Bayes , Simulación por Computador , Toma de Decisiones , Femenino , Humanos , Masculino , Memoria a Corto Plazo/efectos de los fármacos , Tiempo de Reacción/efectos de los fármacos , Recompensa , Adulto Joven
19.
Nat Commun ; 11(1): 912, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-32060266

RESUMEN

Progressive ventricular enlargement, a key feature of several neurologic and psychiatric diseases, is mediated by unknown mechanisms. Here, using murine models of 22q11-deletion syndrome (22q11DS), which is associated with schizophrenia in humans, we found progressive enlargement of lateral and third ventricles and deceleration of ciliary beating on ependymal cells lining the ventricular walls. The cilia-beating deficit observed in brain slices and in vivo is caused by elevated levels of dopamine receptors (Drd1), which are expressed in motile cilia. Haploinsufficiency of the microRNA-processing gene Dgcr8 results in Drd1 elevation, which is brought about by a reduction in Drd1-targeting microRNAs miR-382-3p and miR-674-3p. Replenishing either microRNA in 22q11DS mice normalizes ciliary beating and ventricular size. Knocking down the microRNAs or deleting their seed sites on Drd1 mimicked the cilia-beating and ventricular deficits. These results suggest that the Dgcr8-miR-382-3p/miR-674-3p-Drd1 mechanism contributes to deceleration of ciliary motility and age-dependent ventricular enlargement in 22q11DS.


Asunto(s)
Ventrículos Cerebrales/metabolismo , Cilios/fisiología , MicroARNs/genética , Esquizofrenia/genética , Animales , Deleción Cromosómica , Cilios/genética , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/metabolismo , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatología
20.
J Med Imaging (Bellingham) ; 6(4): 046003, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31824982

RESUMEN

Isocitrate dehydrogenase (IDH) mutation status is an important marker in glioma diagnosis and therapy. We propose an automated pipeline for noninvasively predicting IDH status using deep learning and T2-weighted (T2w) magnetic resonance (MR) images with minimal preprocessing (N4 bias correction and normalization to zero mean and unit variance). T2w MR images and genomic data were obtained from The Cancer Imaging Archive dataset for 260 subjects (120 high-grade and 140 low-grade gliomas). A fully automated two-dimensional densely connected model was trained to classify IDH mutation status on 208 subjects and tested on another held-out set of 52 subjects using fivefold cross validation. Data leakage was avoided by ensuring subject separation during the slice-wise randomization. Mean classification accuracy of 90.5% was achieved for each axial slice in predicting the three classes of no tumor, IDH mutated, and IDH wild type. Test accuracy of 83.8% was achieved in predicting IDH mutation status for individual subjects on the test dataset of 52 subjects. We demonstrate a deep learning method to predict IDH mutation status using T2w MRI alone. Radiologic imaging studies using deep learning methods must address data leakage (subject duplication) in the randomization process to avoid upward bias in the reported classification accuracy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA